Do you want to publish a course? Click here

Nonlocal Andreev reflection, fractional charge and current-phase relation in topological bilayer exciton condensate junctions

167   0   0.0 ( 0 )
 Added by Menno Veldhorst
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Andreev reflection and Josephson currents in topological bilayer exciton condensates (TEC). These systems can create 100% spin entangled nonlocal currents with high amplitudes due to perfect nonlocal Andreev reflection. This Andreev reflection process can be gate tuned from a regime of purely retro reflection to purely specular reflection. We have studied the bound states in TEC-TI-TEC Josephson junctions and find a gapless dispersion for perpendicular incidence. The presence of a sharp transition in the supercurrent-phase relationship when the system is in equilibrium is a signature of fractional charge, which can be further revealed in ac measurements faster than relaxation processes via Landau-Zener processes.



rate research

Read More

In 1928, P. Dirac proposed a new wave equation to describe relativistic electrons. Shortly afterwards, O. Klein solved a simple potential step problem for the Dirac equation and stumbled upon an apparent paradox - the potential becomes transparent when the height is larger than the electron energy. For massless particles, backscattering is completely forbidden in Klein tunneling, leading to perfect transmission through any potential barrier. Recent advent of condensed matter systems with Dirac-like excitations, such as graphene and topological insulators (TIs), has opened the possibility of observing the Klein tunneling experimentally. In the surface states of TIs, fermions are bound by spin-momentum locking, and are thus immune to backscattering due to time-reversal symmetry. Here we report the observation of perfect Andreev reflection in point contact spectroscopy - a clear signature of Klein tunneling and a manifestation of the underlying relativistic physics of a proximity-induced superconducting state in a topological Kondo insulator.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the superconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
We numerically study crossed Andreev reflection (CAR) in a topological insulator nanowire T-junction where one lead is proximitized by a superconductor. We perform realistic simulations based on the 3D BHZ model and compare the results with those from an effective 2D surface model, whose computational cost is much lower. Both approaches show that CAR should be clearly observable in a wide parameter range, including perfect CAR in a somewhat more restricted range. Furthermore, it can be controlled by a magnetic field and is robust to disorder. Our effective 2D implementation allows to model systems of micronsize, typical of experimental setups, but computationally too heavy for 3D models.
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to non-magnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics which can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Perot oscillations in a TI sandwiched between a superconducting and normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from the additional phase accumulated from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are missing. By embedding two gate-tunable Al/InAs Josephson junctions in a loop geometry, we measure a $pi$-jump in the junction phase with increasing in-plane magnetic field, ${bf B}_|$. This jump is accompanied by a minimum of the critical current, indicating a closing and reopening of the superconducting gap, strongly anisotropic in ${bf B}_|$. Our theory confirms that these signatures of a topological transition are compatible with the emergence of Majorana states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا