Do you want to publish a course? Click here

Spin density matrix elements in exclusive $omega$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

166   0   0.0 ( 0 )
 Added by Gunar Schnell
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Exclusive electroproduction of $omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t< 0.2 GeV$^2$. Results on the angular distribution of the $omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $omega$ production by longitudinal and transverse virtual photons, $gamma^{*}_{L} to omega_{T}$ and $gamma^{*}_{T} to omega_{T}$, is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the $gamma^*_T to omega_T$ transition dominates over the two natural-parity-exchange amplitudes describing the $gamma^*_L to omega_L$ and $gamma^*_T to omega_T$ transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.



rate research

Read More

We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive $omega$ meson muoproduction on the proton at COMPASS using 160 GeV/$c$ polarised $ mu ^{+}$ and $ mu ^{-}$ beams impinging on a liquid hydrogen target. The measurement covers the range 5.0 GeV/$c^2$ $< W <$ 17.0 GeV/$c^2$, with the average kinematics $langle Q^{2} rangle=$ 2.1 (GeV/$c$)$^2$, $langle W rangle= 7.6$ GeV/$c^2$, and $langle p^{2}_{rm T} rangle = 0.16$ (GeV/$c$)$^2$. Here, $Q^2$ denotes the virtuality of the exchanged photon, $W$ the mass of the final hadronic system and $p_T$ the transverse momentum of the $omega$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($gamma^*_T to V_L$) indicate a violation of $s$-channel helicity conservation. Additionally, we observe a sizeable contribution of unnatural-parity-exchange (UPE) transitions that decreases with increasing $W$. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow to evaluate in a model-dependent way the contribution of UPE transitions and assess the role of parton helicity-flip GPDs in exclusive $omega$ production.
Hard exclusive electroproduction of $omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $piomega$ transition form factor.
140 - I. Bedlinskiy 2014
Exclusive neutral-pion electroproduction ($epto e^prime p^prime pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_pi$ and structure functions $sigma_T+epsilonsigma_L, sigma_{TT}$ and $sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.
The beam spin asymmetry (BSA) in the exclusive reaction ep->ep pi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer(CLAS). The xB, Q2, t and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin(phi) function and their amplitudes are extracted. Overall, they are of the order of 0.04 - 0.11 and roughly independent of t. This is the signature of a non-zero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed.
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $pi^+$ electroproduction reaction $gamma^* p to n pi^+$. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1.1<W<3$ GeV and $1<Q^2<6$ GeV$^2$. Results were obtained for about 6000 bins in $W$, $Q^2$, $cos(theta^*)$, and $phi^*$. Except at forward angles, very large target-spin asymmetries are observed over the entire $W$ region. Reasonable agreement is found with phenomenological fits to previous data for $W<1.6$ GeV, but very large differences are seen at higher values of $W$. A GPD-based model is in poor agreement with the data. When combined with cross section measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of $Q^2$, for resonances with masses as high as 2.4 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا