Do you want to publish a course? Click here

Charge State Hysteresis in Semiconductor Quantum Dots

134   0   0.0 ( 0 )
 Added by Alessandro Rossi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.



rate research

Read More

322 - Yanwen Wu , I.M. Piper , M. Ediger 2010
Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.
We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase ($I$) and the quadrature ($Q$) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of $8.5times10^{-5} mbox{e}/sqrt{mbox{Hz}}$. A low frequency $1/f$ type noise spectrum combined with a white noise level of $6.6times10^{-6}$ $mbox{e}^2/mbox{Hz}$ above $1$ Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the $1/f$ noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.
A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots, the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimensional control parameter space that must be tuned automatically. Machine learning techniques are capable of processing high-dimensional data - provided that an appropriate training set is available - and have been successfully used for autotuning in the past. In this paper, we develop extremely small feed-forward neural networks that can be used to detect charge-state transitions in quantum dot stability diagrams. We demonstrate that these neural networks can be trained on synthetic data produced by computer simulations, and robustly transferred to the task of tuning an experimental device into a desired charge state. The neural networks required for this task are sufficiently small as to enable an implementation in existing memristor crossbar arrays in the near future. This opens up the possibility of miniaturizing powerful control elements on low-power hardware, a significant step towards on-chip autotuning in future quantum dot computers.
Magnetoresistance measurements have been performed on a gated two-dimensional electron system (2DES) separated by a thin barrier layer from a layer of InAs self-assembled quantum dots (QDs). Clear features of the quantum Hall effect were observed despite the proximity of the QDs layer to the 2DES. However, the magnetoresistance ($rho_{xx}$) and Hall resistance ($rho_{xy}$) are suppressed significantly in the magnetic field range of filling factor $ u<1$ when a positive voltage is applied to the front gate. The influence of the charge state in QDs was observed on the transport properties of the nearby 2DES only in the field range of $ u < 1$. It is proposed that the anomalous suppression of $rho_{xx}$ and $rho_{xy}$ is related to spin excitation, which is induced by spin-flip processes involving electrons in the QDs and the 2DES.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a threshold-like enhancement or reduction of the local nuclear field by up to 3 Tesla can be generated by varying the intensity of light. The excitation power threshold for such a nuclear spin switch is found to depend on both external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of spin transfer from electrons to the nuclei of the dot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا