Do you want to publish a course? Click here

Thermal Conductivity of Graphene Laminate: Making Plastic Thermally Conductive

137   0   0.0 ( 0 )
 Added by Alexander Balandin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied - as deposited and compressed - in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 micrometers. The thermal conductivity of graphene laminate was found to be in the range from 40 W/mK to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. The possibility of up to 600X enhancement of the thermal conductivity of plastic materials by coating them with the thin graphene laminate films has important practical implications.



rate research

Read More

The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain boundaries. Phonon scattering due to sample borders and grain boundaries is shown to result in a $T^{alpha}$-behaviour in the thermal conductivity where $alpha$ varies between 1 and 2. This behaviour is found to be more pronounced for nanosized grain boundaries. PACS: 65.80.Ck, 81.05.ue, 73.43.Cd
The authors proposed a simple model for the lattice thermal conductivity of graphene in the framework of Klemens approximation. The Gruneisen parameters were introduced separately for the longitudinal and transverse phonon branches through averaging over phonon modes obtained from the first-principles. The calculations show that Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions of graphene flakes and can exceed that of the basal planes of bulk graphite when the flake size is on the order of few micrometers. The obtained results are in agreement with experimental data and reflect the two-dimensional nature of phonon transport in graphene.
Recently, some reports show that the ultra-low thermal conductivity of bulk polymers can be enhanced along one direction, which limits its applications. Here, we proposed paved crosswise laminate methods which can enhance the thermal conductivity of bulk polyethylene (PE) along two directions. We find that the thermal conductivity of paved crosswise polyethylene laminate (PPEL) reaches as high as 181 W/m-K along two in-plane directions, which is three orders of magnitude larger than bulk amorphous polyethylene and even more than two times larger than PE single chain (54 W/m-K). The analyses of mechanism indicated that PPEL is a much more crystal-like structure due to the inter-chain van der Waals interactions. Our study may provide guides on the design and fabrication of polymer structures with high thermal conductivity.
We report the exfoliation of graphite in aqueous solutions under high shear rate [$sim10^8s^{-1}$] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below$sim2Omega/square$. This is a simple and scalable production route for graphene-based conductive inks for large area printing in flexible electronics.
We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000 C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from 3 W/mK to 61 W/mK at room temperature. The cross-plane thermal conductivity, Kc, revealed an interesting opposite trend of decreasing to a very small value of 0.09 W/mK in the reduced graphene oxide films annealed at 1000 C. The obtained films demonstrated an exceptionally strong anisotropy of the thermal conductivity, K/Kc ~ 675, which is substantially larger even than in the high-quality graphite. The electrical resistivity of the annealed films reduced to 1 - 19 Ohms/sq. The observed modifications of the in-plane and cross-plane thermal conductivity components resulting in an unusual K/Kc anisotropy were explained theoretically. The theoretical analysis suggests that K can reach as high as ~500 W/mK with the increase in the sp2 domain size and further reduction of the oxygen content. The strongly anisotropic heat conduction properties of these films can be useful for applications in thermal management.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا