Do you want to publish a course? Click here

Vigorous convection in a sunspot granular light bridge

170   0   0.0 ( 0 )
 Added by Andreas Lagg
 Publication date 2014
  fields Physics
and research's language is English
 Authors Andreas Lagg




Ask ChatGPT about the research

Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Central hot upflows surrounded by cooler fast downflows reaching 10 km/s clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression.



rate research

Read More

We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. Blueshifts of about 2 km/s are seen near the entrance of a granular light bridge on the limbward side of the spot. They lie next to a strongly redshifted patch that appeared 6 mins earlier. Both patches are seen for 25 mins until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of it. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength and inclination, with the field becoming nearly horizontal. In the redshifted patch, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca filtergrams over these features, 17 mins after they emerge in the photosphere. The brightening is due to emission in the blue wing of the Ca line, close to its knee. Non-LTE
Traditionally, the strongest magnetic fields on the Sun have been measured in sunspot umbrae. More recently, however, much stronger fields have been measured at the ends of penumbral filaments carrying the Evershed and counter-Evershed flows. Superstrong fields have also been reported within a light bridge separating two umbrae of opposite polarities. We aim to accurately determine the strengths of the strongest fields in a light bridge using an advanced inversion technique and to investigate their detailed structure. We analyze observations from the spectropolarimeter on board the Hinode spacecraft of the active region AR 11967. The thermodynamic and magnetic configurations are obtained by inverting the Stokes profiles using an inversion scheme that allows multiple height nodes. Both the traditional 1D inversion technique and the so-called 2D coupled
418 - Y. J. Hou , T. Li , S. H. Zhong 2020
Penumbral filaments and light bridges are prominent structures inside sunspots and are important for understanding the nature of sunspot magnetic fields and magneto-convection underneath. We investigate an interesting event where several penumbral filaments intruded into a sunspot light bridge for more insights into magnetic fields of the sunspot penumbral filament and light bridge, as well as their interaction. The emission, kinematic, and magnetic topology characteristics of the penumbral filaments intruding into the light bridge and the resultant jets are studied. At the west part of the light bridge, the intruding penumbral filaments penetrated into the umbrae on both sides of the light bridge, and two groups of jets were also detected. The jets shared the same projected morphology with the intruding filaments and were accompanied by intermittent footpoint brightenings. Simultaneous spectral imaging observations provide convincing evidences for the presences of magnetic reconnection related heating and bidirectional flows near the jet bases and contribute to measuring vector velocities of the jets. Additionally, nonlinear force-free field extrapolation results reveal strong and highly inclined magnetic fields along the intruding penumbral filaments, consistent well with the results deduced from the vector velocities of the jets. Therefore, we propose that the jets could be caused by magnetic reconnections between emerging fields within the light bridge and the nearly horizontal fields of intruding filaments. They were then ejected outward along the stronger filaments fields. Our study indicates that magnetic reconnection could occur between the penumbral filament fields and emerging fields within light bridge and produce jets along the stronger filament fields. These results further complement the study of magnetic reconnection and dynamic activities within the sunspot.
Results from a realistic simulation of 3D radiative magneto-convection in a strong background magnetic field corresponding to the conditions in sunspot umbrae are shown. The convective energy transport is dominated by narrow upflow plumes with adjacent downflows, which become almost field-free near the surface layers. The strong external magnetic field forces the plumes to assume a cusp-like shape in their top parts, where the upflowing plasma loses its buoyancy. The resulting bright features in intensity images correspond well (in terms of brightness, size, and lifetime) to the observed umbral dots in the central parts of sunspot umbrae. Most of the simulated umbral dots have a horizontally elongated form with a central dark lane. Above the cusp, most plumes show narrow upflow jets, which are driven by the pressure of the piled-up plasma below. The large velocities and low field strengths in the plumes are effectively screened from spectroscopic observation because the surfaces of equal optical depth are locally elevated, so that spectral lines are largely formed above the cusp. Our simulations demonstrate that nearly field-free upflow plumes and umbral dots are a natural result of convection in a strong, initially monolithic magnetic field.
Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, IRIS, and Solar Dynamics Observatory (SDO), we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with surrounding magnetic fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا