Do you want to publish a course? Click here

Superconductivity by rare earth doping in the 1038-type compounds (Ca$_{1-x}$RE$_x$)$_{10}$(FeAs)$_{10}$(Pt$_3$As$_8$) with RE = Y, La-Nd, Sm-Lu

326   0   0.0 ( 0 )
 Added by Dirk Johrendt
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca$_{1-x}$RE$_x$)$_{10}$(FeAs)$_{10}$(Pt$_3$As$_8$) up to T$_c$ = 35 K with RE = Y, La-Nd, Sm, Gd-Lu. The critical temperatures are independent of the trivalent rare earth element used, yielding an universal T$_c$($x$) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu$^{2+}$ doped samples, as well as the close resemblance of (Ca$_{1-x}$RE$_x$)$_{10}$(FeAs)$_{10}$(Pt$_3$As$_8$) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is completely analogous to other iron-based superconductors with simpler crystal structures.

rate research

Read More

We report the successful substitution of cobalt, nickel, and copper for iron in the 1038 phase parent compound Ca$_{10}$(FeAs)$_{10}$(Pt$_3$As$_8$) yielding Ca$_{10}$(Fe$_{1-x}$Co$_x$As)$_{10}$(Pt$_3$As$_8$), Ca$_{10}$(Fe$_{1-x}$Ni$_x$As)$_{10}$(Pt$_3$As$_8$), and Ca$_{10}$(Fe$_{1-x}$Cu$_x$As)$_{10}$(Pt$_3$As$_8$), respectively. Superconductivity is induced in Co and Ni doped compounds reaching critical temperatures up to 15 K, similar to known Pt substituted Ca$_{10}$(Fe$_{1-x}$Pt$_x$As)$_{10}$(Pt$_3$As$_8$), whereas no superconductivity was detected in Ca$_{10}$(Fe$_{1-x}$Cu$_x$As)$_{10}$(Pt$_3$As$_8$). The obtained Tc(x) phase diagrams are very similar to those of other iron arsenide superconductors indicating rather universal behavior despite the more complex structures of the 1038-type compounds, where the physics is primarily determined by the FeAs layer.
90 - Tom Berlijn 2014
The platinum iron arsenides Ca$_{10}$(Fe$_{1-x}$Pt$_x$As)$_{10}$(Pt$_n$As$_8$) are the first Fe based superconductors with metallic spacer layers. Furthermore they display a large variation in their critical temperatures depending on the amount of Pt in their spacer layers: $(n=3,4)$. To gain more insight into the role of the spacer layer the electronic structures of the iron arsenic platenides are represented in the momentum space of the underlying Fe sublattice using a first principles unfolding method. We find that Ca$_{10}$(FeAs)$_{10}$(Pt$_4$As$_8$), contrary to Ca$_{10}$(FeAs)$_{10}$(Pt$_3$As$_8$), shows a net electron doping and a non-negligible interlayer coupling. Both effects could account for the difference in the critical temperatures.
Inelastic neutron scattering studies have been carried out on selected phonons and magnetic excitations of a crystal of superconducting (SC) Ca$_{10}$Pt$_4$As$_8$(Fe$_{1-x}$Pt$_x$As)$_{10}$ with the onset transition temperature $T_{rm c}^{rm onset} sim$ 33 K to investigate the role that orbital fluctuations play in the Cooper pairing. The spectral weight of the magnetic excitations, $chi ({bm Q}, omega)$ at ${bm Q} = {bm Q}_{rm M}$ (magnetic $Gamma$ points) is suppressed (enhanced) in the relatively low (high) $omega$ region. The maximum of the enhancement is located at $omega = omega_{rm p} sim$ 18 meV at temperature $T = 3$ K corresponding to the $omega_{rm p}/k_{rm B}T_{rm c}^{rm onset} sim$ 6.3. This large value is rather favorable to the orbital-fluctuation mechanism of the superconductivity with the so-called $S_{++}$ symmetry. In the phonon measurements, we observed slight softening of the in-plane transverse acoustic mode corresponding to the elastic constant $C_{66}$. This softening starts at $T$ well above the superconducting $T_{rm c}$, as $T$ decreases. An anomalously large increase in the phonon spectral weight of in-plane optical modes was observed in the range of $35 < omega < 40$ meV with decreasing $T$ from far above $T_{rm c}$. Because this $omega$ region mainly corresponds to the in-plane vibrations of Fe atoms, the finding presents information on the coupling between the orbital fluctuation of the Fe 3$d$ electrons and lattice system, useful for studying possible roles of the orbital fluctuation in the pairing mechanism and appearance of the so-called nematic phase.
99 - J. Chen , L. Jiao , J. L. Zhang 2013
We present research on the superconducting properties of Nb$_{x}$Re$_{1-x}$ ($x$ = 0.13-0.38) obtained by measuring the electrical resistivity $rho(T)$, magnetic susceptibility $chi(T)$, specific heat $C_P(T)$, and London penetration depth $Deltalambda(T)$. It is found that the superconducting transition temperature $T_c$ decreases monotonically with an increase of $x$. The upper critical field $B_{c2}(T)$ for various $x$ can be nicely scaled by its corresponding $T_c$. The electronic specific heat $C_e(T)/T$, penetration depth $Deltalambda(T)$, and superfluid density $rho_{s}(T)$ demonstrate exponential behavior at low temperatures and can be well fitted by a one-gap BCS model. The residual Sommerfeld coefficient $gamma_0(B)$ in the superconducting state follows a linear field dependence. All these properties suggest an emph{s}-wave BCS-type of superconductivity with a very large $B_{c2}(0)$ for Nb$_{x}$Re$_{1-x}$ (0.13 $leq x leq$ 0.38).
We report the magnetic field -- temperature ($H-T$) phase diagram of Ca$_{10}$(Pt$_4$As$_8$)[(Fe$_{1-x}$Pt$_x$)$_2$As$_2$]$_5$ ($xapprox 0.05$) single crystals, which consists of normal, vortex liquid, plastic creep and elastic creep phases. The upper critical field anisotropy is determined by a radio frequency technique via the measurements of magnetic penetration depth, $lambda$. Both, irreversibility line, $H_{irr}(T)$, and flux creep line, $H^{SPM}(T)$, are obtained by measuring the magnetization. We find that $H_{irr}(T)$ is well described by the Lindemann criterion with parameters similar to those for cuprates, while small $H^{SPM}(T)$ results in a wide plastic creep regime. The flux creep rates in the elastic creep regime are in qualitative agreement with the collective creep theory for random point defects. A gradual crossover from a single vortex to a bundles regime is observed. Moreover, we obtain $lambda(4~ text K) = 260(26)$ nm through the direct measurement of the London penetration depth by magnetic force microscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا