Do you want to publish a course? Click here

Discrete-time probabilistic approximation of path-dependent stochastic control problems

103   0   0.0 ( 0 )
 Added by Xiaolu Tan
 Publication date 2014
  fields
and research's language is English
 Authors Xiaolu Tan




Ask ChatGPT about the research

We give a probabilistic interpretation of the Monte Carlo scheme proposed by Fahim, Touzi and Warin [Ann. Appl. Probab. 21 (2011) 1322-1364] for fully nonlinear parabolic PDEs, and hence generalize it to the path-dependent (or non-Markovian) case for a general stochastic control problem. A general convergence result is obtained by a weak convergence method in the spirit of Kushner and Dupuis [Numerical Methods for Stochastic Control Problems in Continuous Time (1992) Springer]. We also get a rate of convergence using the invariance principle technique as in Dolinsky [Electron. J. Probab. 17 (2012) 1-5], which is better than that obtained by viscosity solution method. Finally, by approximating the conditional expectations arising in the numerical scheme with simulation-regression method, we obtain an implementable scheme.



rate research

Read More

This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, with dynamics associated to a non singular underlying forward process. Due to the non$-$Markovian environment, our main argumentation relies on the use of comparison arguments for path dependent PDEs. Our representation allows in particular to quantify the regularity of the solution to the singular stochastic control problem in terms of the space and time initial data. Our framework also extends to the consideration of degenerate diffusions, leading to the representation of the solution as the infimum of solutions to $Z-$constrained BSDEs. As an application, we study the utility maximisation problem with transaction costs for non$-$Markovian dynamics.
This paper provides convergence analysis for the approximation of a class of path-dependent functionals underlying a continuous stochastic process. In the first part, given a sequence of weak convergent processes, we provide a sufficient condition for the convergence of the path-dependent functional underlying weak convergent processes to the functional of the original process. In the second part, we study the weak convergence of Markov chain approximation to the underlying process when it is given by a solution of stochastic differential equation. Finally, we combine the results of the two parts to provide approximation of option pricing for discretely monitoring barrier option underlying stochastic volatility model. Different from the existing literatures, the weak convergence analysis is obtained by means of metric computations in the Skorohod topology together with the continuous mapping theorem. The advantage of this approach is that the functional under study may be a function of stopping times, projection of the underlying diffusion on a sequence of random times, or maximum/minimum of the underlying diffusion.
83 - Meiqi Liu , Huijie Qiao 2020
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likelihood estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.
106 - Ibrahim Ekren 2013
In this article, we adapt the definition of viscosity solutions to the obstacle problem for fully nonlinear path-dependent PDEs with data uniformly continuous in $(t,omega)$, and generator Lipschitz continuous in $(y,z,gamma)$. We prove that our definition of viscosity solutions is consistent with the classical solutions, and satisfy a stability result. We show that the value functional defined via the second order reflected backward stochastic differential equation is the unique viscosity solution of the variational inequalities.
In this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative convergence for the solutions obtained from solving the discretized two-stage stochastic LCP (SLCP). We explain how the discretized two-stage SLCP may be solved by the well-known progressive hedging method (PHM). Moreover, we extend the discussion by considering a two-stage distributionally robust LCP (DRLCP) with moment constraints and proposing a discretization scheme for the DRLCP. As an application, we show how the SLCP and DRLCP models can be used to study equilibrium arising from two-stage duopoly game where each player plans to set up its optimal capacity at present with anticipated competition for production in future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا