No Arabic abstract
Decoherence effects at finite temperature (T) are examined for two manifestly quantum systems: (i) Casimir forces between parallel plates that conduct along different directions, and (ii) a topological Aharonov-Bohm (AB) type force between fluxons in a superconductor. As we illustrate, standard path integral calculations suggest that thermal effects may remove the angular dependence of the Casimir force in case (i) with a decoherence time set by h/(k_{B} T) where h is Planks constant and k_{B} is the Boltzmann constant. This prediction may be tested. The effect in case (ii) is due a phase shift picked by unpaired electrons upon encircling an odd number of fluxons. In principle, this effect may lead to small modifications in Abrikosov lattices. While the AB forces exist at extremely low temperatures, we find that thermal decoherence may strongly suppress the topological force at experimentally pertinent finite temperatures. It is suggested that both cases (i) and (ii) (as well as other examples briefly sketched) are related to a quantum version of the fluctuation-dissipation theorem.
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102 073008 (2009)] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
We discuss anomalous decoherence effects at zero and finite temperatures in driven coupled quantum spin systems. By numerical simulations of the quantum master equation, it is found that the entanglement of two coupled spin qubits exhibits a non-monotonic behaviour as a function of the noise strength. The effects of noise strength, the detuning and finite temperature of independent environments on the steady state entanglement are addressed in detail. Pumped by an external field drive, non-trivial steady states can be found, the steady state entanglement increases monotonically up to a maximum at certain optimal noise strength and decreases steadily for higher values. Furthermore, increasing the detuning can not only induce but also suppress steady state entanglement, which depends on the value of noise strength. At last, we delimit the border between presence or absence of steady state entanglement and discuss the related experimental temperatures where typical biomolecular systems exhibit long-lived coherences and quantum entanglement in photosynthetic light-harvesting complexes.
The decoherence induced on a single qubit by its interaction with the environment is studied. The environment is modelled as a scalar two-level boson system that can go through either first order or continuous excited state quantum phase transitions, depending on the values of the control parameters. A mean field method based on the Tamm-Damkoff approximation is worked out in order to understand the observed behaviour of the decoherence. Only the continuous excited state phase transition produces a noticeable effect in the decoherence of the qubit. This is maximal when the system-environment coupling brings the environment to the critical point for the continuous phase transition. In this situation, the decoherence factor (or the fidelity) goes to zero with a finite size scaling power law.
The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence) and qubits interacting collectively with the same reservoir (`collective decoherence). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of $both$ types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour (recoherence) is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the systems Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.
Deriving minimum evolution times is of paramount importance in quantum mechanics. Bounds on the speed of evolution are given by the so called quantum speed limit (QSL). In this work we use quantum optimal control methods to study the QSL for driven many level systems which exhibit local two-level interactions in the form of avoided crossings (ACs). Remarkably, we find that optimal evolution times are proportionally smaller than those predicted by the well-known two-level case, even when the ACs are isolated. We show that the physical mechanism for such enhancement is due to non-trivial cooperative effects between the AC and other levels, which are dynamically induced by the shape of the optimized control field.