No Arabic abstract
We discuss renormalization in a toy model with one fermion field and one real scalar field phi, featuring a spontaneously broken discrete symmetry which forbids a fermion mass term and a phi^3 term in the Lagrangian. We employ a renormalization scheme which uses the MSbar scheme for the Yukawa and quartic scalar couplings and renormalizes the vacuum expectation value of phi by requiring that the one-point function of the shifted field is zero. In this scheme, the tadpole contributions to the fermion and scalar selfenergies are canceled by choice of the renormalization parameter delta_v of the vacuum expectation value. However, delta_v and, therefore, the tadpole contributions reenter the scheme via the mass renormalization of the scalar, in which place they are indispensable for obtaining finiteness. We emphasize that the above renormalization scheme provides a clear formulation of the hierarchy problem and allows a straightforward generalization to an arbitrary number of fermion and scalar fields.
We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously and apply this idea to the Standard Model (SM). We compute the quantum corrections to the potential of the higgs field ($phi$) in the classically scale invariant version of the SM ($m_phi=0$ at tree level) extended by the dilaton ($sigma$). The tree-level potential of $phi$ and $sigma$, dictated by scale invariance, may contain non-polynomial effective operators, e.g. $phi^6/sigma^2$, $phi^8/sigma^4$, $phi^{10}/sigma^6$, etc. The one-loop scalar potential is scale invariant, since the loop calculations manifestly preserve the scale symmetry, with the DR subtraction scale $mu$ generated spontaneously by the dilaton vev $musimlanglesigmarangle$. The Callan-Symanzik equation of the potential is verified in the presence of the gauge, Yukawa and the non-polynomial operators. The couplings of the non-polynomial operators have non-zero beta functions that we can actually compute from the quantum potential. At the quantum level the higgs mass is protected by spontaneously broken scale symmetry, even though the theory is non-renormalizable. We compare the one-loop potential to its counterpart computed in the traditional DR scheme that breaks scale symmetry explicitly ($mu=$constant) in the presence at the tree level of the non-polynomial operators.
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons. We demonstrate, that in the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time (PT ) symmetry breaking. These localized vibrations can be interpreted as topological defects in the quasiclassical energy spectrum.
We consider the static potential in theories exhibiting spontaneous symmetry breaking. We use our findings to calculate the static potential of the Standard Model at one-loop order. We do so in both the Wilson loop and scattering amplitude approaches and discuss the limitations of the Wilson loop approach. As the field content of the SM is extensive, analogous results to ours in a large set of models is now achievable by varying the appropriate couplings and group theory factors.
We study the coupled system consisting of a complex matter scalar field, a U(1) gauge field, and a complex Higgs scalar field that causes spontaneously symmetry breaking. We show by numerical calculations that there are spherically symmetric nontopological soliton solutions. Homogeneous balls solutions, all fields take constant values inside the ball and in the vacuum state outside, appear in this system. It is shown that the homogeneous balls have the following properties: charge density of the matter scalar field is screened by counter charge cloud of the Higgs and gauge field everywhere; an arbitrary large size is allowed; energy density and pressure of the ball behave homogeneous nonrelativistic gas; a large ball is stable against dispersion into free particles and against decay into two smaller balls.
Until the late 1980s, phases of matter were understood in terms of Landaus symmetry breaking theory. Following the discovery of the quantum Hall effect the introduction of a second class of phases, those with topological order, was necessary. Phase transitions within the first class of phases involve a change in symmetry, whereas those between topological phases require a change in topological order. However, in rare cases transitions may occur between the two classes in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. Here, we report the existence of such a transition in a two-dimensional electron gas hosted by a GaAs/AlGaAs crystal. When tuned by hydrostatic pressure, the $ u=5/2$ fractional quantum Hall state, believed to be a prototype non-Abelian topological phase, gives way to a quantum Hall nematic phase. Remarkably, this nematic phase develops spontaneously, in the absence of any externally applied symmetry breaking fields.