Do you want to publish a course? Click here

Coercivity reduction in a two-dimensional array of nanoparticles

204   0   0.0 ( 0 )
 Added by Alexander Sukhov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.



rate research

Read More

97 - V.G. Harris , Y. Chen , A. Yang 2009
Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room temperature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m3. Consisting of Co3C and Co2C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magnet properties. Further, the acicular particle shape provides an enhancement to the coercivity via dipolar anisotropy energy as well as offering potential for particle alignment in nanocomposite cores. While Curie temperatures are near 510K at temperatures approaching 700 K the carbide powders experience an irreversible dissociation to metallic cobalt and carbon thus limiting operational temperatures to near room temperature.
We show that the coercive field in ferritin and ferrihydrite depends on the maximum magnetic field in a hysteresis loop and that coercivity and loop shifts depend both on the maximum and cooling fields. In the case of ferritin we show that the time dependence of the magnetization also depends on the maximum and previous cooling fields. This behavior is associated to changes in the intra-particle energy barriers imprinted by these fields. Accordingly, the dependence of the coercive and loop shift fields with the maximum field in ferritin and ferrihydrite can be described within the frame of a uniform-rotation model considering a dependence of the energy barrier with the maximum and the cooling fields.
Nanoparticles with their specific properties newly have drawn a great deal of attention of researchers [1-3]Yttrium iron Garnet magnetic nanoparticles (YIG-NPs) are promising materials with novel applications in microwave, spintronics, magnonics, and magneto-optical devices. However, achieving stable and remarkable magnetic YIG-NPs has been remaining as a great challenge. In this paper, synthesized YIG-NPs by modifying co-precipitation (MCP) method is reported. Structural and magnetic properties of final products are compared to those of the materials prepared by citrate-nitrate (CN) method. Smaller crystals and particle size have been found by MCP method comparing to that of synthesized by CN method. Using a relatively low annealing temperatures for both sets of samples (~700 {deg}C), the final YIG samples prepared by MCP method show more structural purity than those made by CN method. Higher saturation magnetization (Ms) and lower coercivity (Hc) are observed in MCP YIG sample (23.23 emu/g 36 and 30.1 Oe) than the CN prepared YIG sample (16.43 emu/g and 44.95 Oe). The Curie temperature is measured to be 569 {deg}C for the MCP YIG sample determined from set of Ms measurement at different temperatures ranging from 80-600 K. These findings lead to significant improvement in quality of synthesized (synthetic methods) of YIG-NPs.
Magnetic coercivity is often viewed to be lower in alloys with negligible (or zero) values of the anisotropy constant. However, this explains little about the dramatic drop in coercivity in FeNi alloys at a non-zero anisotropy value. Here, we develop a theoretical and computational tool to investigate the fundamental interplay between material constants that govern coercivity in bulk magnetic alloys. The two distinguishing features of our coercivity tool are that: (a) we introduce a large localized disturbance, such as a spike-like magnetic domain, that provides a nucleation barrier for magnetization reversal; and (b) we account for magneto-elastic energy -- however small -- in addition to the anisotropy and magnetostatic energy terms. We apply this coercivity tool to show that the interactions between local instabilities and material constants, such as anisotropy and magnetostriction constants, are key factors that govern magnetic coercivity in bulk alloys. Using our model, we show that coercivity is minimum at the permalloy composition (Fe-21.5Ni-78.5) at which the alloys anisotropy constant is not zero. We systematically vary the values of the anisotropy and magnetostriction constants, around the permalloy composition, and identify new combinations of material constants at which coercivity is small. More broadly, our coercivity tool provides a theoretical framework to potentially discover novel magnetic materials with low coercivity.
111 - S. Bance , G. Ciuta , T. Shoji 2015
Based on a critical analysis of the experimental coercive properties, general considerations on the reversal mechanisms in RFeB magnets are recalled. By plotting together the experimental parameters obtained in various magnets, common features of the reversal processes are demonstrated. Modeling provides an almost quantitative description of coercivity in these materials and permits connecting the defect characteristic properties to reversal mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا