Do you want to publish a course? Click here

Marginal Stability in Structural, Spin and Electron Glasses

151   0   0.0 ( 0 )
 Added by Matthieu Wyart
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the concept of marginal stability in glasses, and determine its range of applicability in the context of avalanche-type response to slow external driving. We argue that there is an intimate connection between a pseudo-gap in the distribution of local fields and crackling in systems with long-range interactions. We show how the principle of marginal stability offers a unifying perspective on the phenomenology of systems as diverse as spin and electron glasses, hard spheres, pinned elastic interfaces and the plasticity of soft amorphous solids.



rate research

Read More

We investigate the properties of local minima of a recently introduced spin glass model of soft spins subjected to an anharmonic quartic local potential which serves as a model of low temperature molecular or soft glasses. We track the long time gradient descent dynamics in the glassy phase through dynamical mean field theory and show that spins are separated in two groups depending on their local stiffness. For spins having local stiffness that is right above its smallest possible value, the local fields distribution displays a depletion around the origin while those having a stiffness right below its largest possible value have a regular local fields distribution. We rationalize these findings through the replica method and show that the finite temperature phase transition to the glass phase is of continuous (full) replica-symmetry-breaking (RSB) type at low temperatures, down to zero temperature. Furthermore, marginal stability of the zero temperature fullRSB solution implies a linear pseudogap in the density of cavity fields for the spins with a local effective stiffness that is below a certain threshold. This generates a hole around the origin in the corresponding local field distribution. Those spins are natural candidates to model two level systems (TLS). The behavior of the cavity fields distribution for spins having stiffness close to the threshold one determines the tail of the low frequency density of states which is gapless. Therefore the corresponding spins are the natural candidates to model quasi localized modes (QLM) in glasses.
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square model with nearest- and next-nearest-neighbor competing interactions and the corresponding version of the simple Ising model are studied and their general universality aspects are inspected by a detailed finite-size scaling (FSS) analysis. We find that, the random bond SAF model obeys weak universality, hyperscaling, and exhibits a strong saturating behavior of the specific heat due to the competing nature of interactions. On the other hand, for the random Ising model we encounter some difficulties for a definite discrimination between the two well-known scenarios of the logarithmic corrections versus the weak universality. Yet, a careful FSS analysis of our data favors the field-theoretically predicted logarithmic corrections.
We give an overview of numerical and experimental estimates of critical exponents in Spin Glasses. We find that the evidence for a breakdown of universality of exponents in these systems is very strong.
166 - P. D. Gujrati 2009
Starting from the second law of thermodynamics applied to an isolated system consisting of the system surrounded by an extremely large medium, we formulate a general non-equilibrium thermodynamic description of the system when it is out of equilibrium. We then apply it to study the structural relaxation in glasses and establish the phenomenology behind the concept of the fictive temperature and of the empirical Tool-Narayanaswamy equation on firmer theoretical foundation.
Optimizing a high-dimensional non-convex function is, in general, computationally hard and many problems of this type are hard to solve even approximately. Complexity theory characterizes the optimal approximation ratios achievable in polynomial time in the worst case. On the other hand, when the objective function is random, worst case approximation ratios are overly pessimistic. Mean field spin glasses are canonical families of random energy functions over the discrete hypercube ${-1,+1}^N$. The near-optima of these energy landscapes are organized according to an ultrametric tree-like structure, which enjoys a high degree of universality. Recently, a precise connection has begun to emerge between this ultrametric structure and the optimal approximation ratio achievable in polynomial time in the typical case. A new approximate message passing (AMP) algorithm has been proposed that leverages this connection. The asymptotic behavior of this algorithm has been analyzed, conditional on the nature of the solution of a certain variational problem. In this paper we describe the first implementation of this algorithm and the first numerical solution of the associated variational problem. We test our approach on two prototypical mean-field spin glasses: the Sherrington-Kirkpatrick (SK) model, and the $3$-spin Ising spin glass. We observe that the algorithm works well already at moderate sizes ($Ngtrsim 1000$) and its behavior is consistent with theoretical expectations. For the SK model it asymptotically achieves arbitrarily good approximations of the global optimum. For the $3$-spin model, it achieves a constant approximation ratio that is predicted by the theory, and it appears to beat the `threshold energy achieved by Glauber dynamics. Finally, we observe numerically that the intermediate states generated by the algorithm have the properties of ancestor states in the ultrametric tree.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا