Do you want to publish a course? Click here

Collective Intelligence in Citizen Science -- A Study of Performers and Talkers

155   0   0.0 ( 0 )
 Added by Walter S. Lasecki
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

The recent emergence of online citizen science is illustrative of an efficient and effective means to harness the crowd in order to achieve a range of scientific discoveries. Fundamentally, citizen science projects draw upon crowds of non-expert volunteers to complete short Tasks, which can vary in domain and complexity. However, unlike most human-computational systems, participants in these systems, the `citizen scientists are volunteers, whereby no incentives, financial or otherwise, are offered. Furthermore, encouraged by citizen science platforms such as Zooniverse, online communities have emerged, providing them with an environment to discuss, share ideas, and solve problems. In fact, it is the result of these forums that has enabled a number of scientific discoveries to be made. In this paper we explore the phenomenon of collective intelligence via the relationship between the activities of online citizen science communities and the discovery of scientific knowledge. We perform a cross-project analysis of ten Zooniverse citizen science projects and analyse the behaviour of users with regards to their Task completion activity and participation in discussion and discover collective behaviour amongst highly active users. Whilst our findings have implications for future citizen science design, we also consider the wider implications for understanding collective intelligence research in general.



rate research

Read More

103 - Karen Masters , 2016
We investigate the development of scientific content knowledge of volunteers participating in online citizen science projects in the Zooniverse (www.zooniverse.org), including the astronomy projects Galaxy Zoo (www.galaxyzoo.org) and Planet Hunters (www.planethunters.org). We use econometric methods to test how measures of project participation relate to success in a science quiz, controlling for factors known to correlate with scientific knowledge. Citizen scientists believe they are learning about both the content and processes of science through their participation. Wont dont directly test the latter, but we find evidence to support the former - that more actively engaged participants perform better in a project-specific science knowledge quiz, even after controlling for their general science knowledge. We interpret this as evidence of learning of science content inspired by participation in online citizen science.
Nowadays, 23% of the world population lives in multi-million cities. In these metropolises, criminal activity is much higher and violent than in either small cities or rural areas. Thus, understanding what factors influence urban crime in big cities is a pressing need. Mainstream studies analyse crime records through historical panel data or analysis of historical patterns combined with ecological factor and exploratory mapping. More recently, machine learning methods have provided informed crime prediction over time. However, previous studies have focused on a single city at a time, considering only a limited number of factors (such as socio-economical characteristics) and often at large spatial units. Hence, our understanding of the factors influencing crime across cultures and cities is very limited. Here we propose a Bayesian model to explore how crime is related not only to socio-economic factors but also to the built environmental (e.g. land use) and mobility characteristics of neighbourhoods. To that end, we integrate multiple open data sources with mobile phone traces and compare how the different factors correlate with crime in diverse cities, namely Boston, Bogota, Los Angeles and Chicago. We find that the combined use of socio-economic conditions, mobility information and physical characteristics of the neighbourhood effectively explain the emergence of crime, and improve the performance of the traditional approaches. However, we show that the socio-ecological factors of neighbourhoods relate to crime very differently from one city to another. Thus there is clearly no one fits all model.
The murder of George Floyd by police in May 2020 sparked international protests and renewed attention in the Black Lives Matter movement. Here, we characterize ways in which the online activity following George Floyds death was unparalleled in its volume and intensity, including setting records for activity on Twitter, prompting the saddest day in the platforms history, and causing George Floyds name to appear among the ten most frequently used phrases in a day, where he is the only individual to have ever received that level of attention who was not known to the public earlier that same week. Further, we find this attention extended beyond George Floyd and that more Black victims of fatal police violence received attention following his death than during other past moments in Black Lives Matters history. We place that attention within the context of prior online racial justice activism by showing how the names of Black victims of police violence have been lifted and memorialized over the last 12 years on Twitter. Our results suggest that the 2020 wave of attention to the Black Lives Matter movement centered past instances of police violence in an unprecedented way, demonstrating the impact of the movements rhetorical strategy to say their names.
Far-right actors are often purveyors of Islamophobic hate speech online, using social media to spread divisive and prejudiced messages which can stir up intergroup tensions and conflict. Hateful content can inflict harm on targeted victims, create a sense of fear amongst communities and stir up intergroup tensions and conflict. Accordingly, there is a pressing need to better understand at a granular level how Islamophobia manifests online and who produces it. We investigate the dynamics of Islamophobia amongst followers of a prominent UK far right political party on Twitter, the British National Party. Analysing a new data set of five million tweets, collected over a period of one year, using a machine learning classifier and latent Markov modelling, we identify seven types of Islamophobic far right actors, capturing qualitative, quantitative and temporal differences in their behaviour. Notably, we show that a small number of users are responsible for most of the Islamophobia that we observe. We then discuss the policy implications of this typology in the context of social media regulation.
144 - Taraneh Khazaei , Lu Xiao 2014
The emergence and ongoing development of Web 2.0 technologies have enabled new and advanced forms of collective intelligence at unprecedented scales, allowing large numbers of individuals to act collectively and create high quality intellectual artifacts. However, little is known about how and when they indeed promote collective intelligence. In this manuscript, we provide a survey of the automated tools developed to analyze discourse-centric collective intelligence. By conducting a thematic analysis of the current research direction, a set of gaps and limitations are identified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا