We compute the critical temperature for the chiral transition in the background of a magnetic field in the linear sigma model, including the quark contribution and the thermo-magnetic effects induced on the coupling constants at one loop level. We show that the critical temperature decreases as a function of the field strength. The effect of fermions on the critical temperature is small and the main effect on this observable comes from the charged pions. The findings support the idea that the anticatalysis phenomenon receives a contribution due only to quiral symmetry effects independent of the deconfinement transition.
We consider the evolution of critical temperature both for the formation of a pion condensate as well as for the chiral transition, from the perspective of the linear sigma model, in the background of a magnetic field. We developed the discussion for the pion condensate in one loop approximation for the effective potential getting magnetic catalysis for high values of B, i.e. a raising of the critical temperature with the magnetic field. For the analysis of the chiral restoration, we go beyond this approximation, by taking one loop thermo-magnetic corrections to the couplings as well as plasma screening effects for the bosons masses, expressed through the resumation of ring diagrams. Here we found the opposite behavior, i.e. inverse magnetica catalysis, i.e. a decreasing of the chiral critical temperature as function of the intensity of the magnetic field, which seems to be in agreement with recent results form the lattice community.
We compute the magnetic field-induced modifications to the boson self-coupling and the boson-fermion coupling, in the static limit, using an effective model of QCD, the linear sigma model with quarks. The former is computed for arbitrary field strengths as well as using the strong field approximation. The latter is obtained in the strong field limit. The arbitrary field result for the boson self-coupling depends on the ultraviolet renormalization scale and this dependence cannot be removed by a simple vacuum subtraction. Using the strong field result as a guide, we find the appropriate choice for this scale and discuss the physical implications. The boson-fermion coupling depends on the Schwingers phase and we show how this phase can be treated consistently in such a way that the magnetic field induced vertex modification is both gauge invariant and can be written with an explicit factor corresponding to energy-momentum conservation for the external particles. Both couplings show a modest decrease with the field strength.
We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition region. While the former is known to be robust and independent of the details of the interactions, inverse catalysis arises as a result of a delicate competition, effective only for light quarks. By performing simulations at different quark masses, we determine the pion mass above which inverse catalysis does not take place in the transition region anymore. Even for pions heavier than this limiting value - where the quark condensate undergoes magnetic catalysis - our results are consistent with the notion that the transition temperature is reduced by the magnetic field. These findings will be useful to guide low-energy models and effective theories of QCD.
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field $B$. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter $T_0$ of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at $B=0$ is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
We investigate the role of undetermined finite contributions generated by radiative corrections in a $SU(2)times SU(2)$ linear sigma model with quarks. Although some of such terms can be absorbed in the renormalization procedure, one such contribution is left in the expression for the pion decay constant. This arbitrariness is eliminated by chiral symmetry.