Do you want to publish a course? Click here

Reconstructing subclonal composition and evolution from whole genome sequencing of tumors

132   0   0.0 ( 0 )
 Added by Shankar Vembu
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Tumors often contain multiple subpopulations of cancerous cells defined by distinct somatic mutations. We describe a new method, PhyloWGS, that can be applied to WGS data from one or more tumor samples to reconstruct complete genotypes of these subpopulations based on variant allele frequencies (VAFs) of point mutations and population frequencies of structural variations. We introduce a principled phylogenic correction for VAFs in loci affected by copy number alterations and we show that this correction greatly improves subclonal reconstruction compared to existing methods.



rate research

Read More

The Roma people, living throughout Europe, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1000-1500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry-deriving from a combination of European and South Asian sources- and that the date of admixture of South Asian and European ancestry was about 850 years ago. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which we hypothesize was followed by a major demographic expansion once the population arrived in Europe.
In recent years, Whole Genome Sequencing (WGS) evolved from a futuristic-sounding research project to an increasingly affordable technology for determining complete genome sequences of complex organisms, including humans. This prompts a wide range of revolutionary applications, as WGS promises to improve modern healthcare and provide a better understanding of the human genome -- in particular, its relation to diseases and response to treatments. However, this progress raises worrisome privacy and ethical issues, since, besides uniquely identifying its owner, the genome contains a treasure trove of highly personal and sensitive information. In this article, after summarizing recent advances in genomics, we discuss some important privacy issues associated with human genomic information and identify a number of particularly relevant research challenges.
Understanding the relationship between genomic variation and variation in phenotypes for quantitative traits such as physiology, yield, fitness or behavior, will provide important insights for both predicting adaptive evolution and for breeding schemes. A particular question is whether the genetic variation that influences quantitative phenotypes is typically the result of one or two mutations of large effect, or multiple mutations of small effect. In this paper we explore this issue using the wild model legume Medicago truncatula. We show that phenotypes, such as quantitative disease resistance, can be well-predicted using genome-wide patterns of admixture, from which it follows that there must be many mutations of small effect. Our findings prove the potential of our novel whole-genome modeling -WhoGEM- method and experimentally validate, for the first time, the infinitesimal model as a mechanism for adaptation of quantitative phenotypes in plants. This insight can accelerate breeding and biomedicine research programs.
Recent genetic studies and whole-genome sequencing projects have greatly improved our understanding of human variation and clinically actionable genetic information. Smaller ethnic populations, however, remain underrepresented in both individual and large-scale sequencing efforts and hence present an opportunity to discover new variants of biomedical and demographic significance. This report describes the sequencing and analysis of a genome obtained from an individual of Serbian origin, introducing tens of thousands of previously unknown variants to the currently available pool. Ancestry analysis places this individual in close proximity of the Central and Eastern European populations; i.e., closest to Croatian, Bulgarian and Hungarian individuals and, in terms of other Europeans, furthest from Ashkenazi Jewish, Spanish, Sicilian, and Baltic individuals. Our analysis confirmed gene flow between Neanderthal and ancestral pan-European populations, with similar contributions to the Serbian genome as those observed in other European groups. Finally, to assess the burden of potentially disease-causing/clinically relevant variation in the sequenced genome, we utilized manually curated genotype-phenotype association databases and variant-effect predictors. We identified several variants that have previously been associated with severe early-onset disease that is not evident in the proband, as well as variants that could yet prove to be clinically relevant to the proband over the next decades. The presence of numerous private and low-frequency variants along with the observed and predicted disease-causing mutations in this genome exemplify some of the global challenges of genome interpretation, especially in the context of understudied ethnic groups.
Reconstructing multiple molecularly defined neurons from individual brains and across multiple brain regions can reveal organizational principles of the nervous system. However, high resolution imaging of the whole brain is a technically challenging and slow process. Recently, oblique light sheet microscopy has emerged as a rapid imaging method that can provide whole brain fluorescence microscopy at a voxel size of 0.4 by 0.4 by 2.5 cubic microns. On the other hand, complex image artifacts due to whole-brain coverage produce apparent discontinuities in neuronal arbors. Here, we present connectivity-preserving methods and data augmentation strategies for supervised learning of neuroanatomy from light microscopy using neural networks. We quantify the merit of our approach by implementing an end-to-end automated tracing pipeline. Lastly, we demonstrate a scalable, distributed implementation that can reconstruct the large datasets that sub-micron whole-brain images produce.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا