Do you want to publish a course? Click here

Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

120   0   0.0 ( 0 )
 Added by Roberta Zanin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data ($chi^2=35/26$). Using systematic uncertainties of red the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 $pm$ 3stat + 31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state- of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 {mu}G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.



rate research

Read More

We report on the observations of the Crab pulsar with the MAGIC telesopes. Data were taken both in the mono-mode ($>25$ GeV) and in the stereo-mode ($>50$ GeV). Clear signals from the two peaks were detected with both modes and the phase resolved energy spectra were calculated. By comparing with the measurements done by Fermi-LAT, we found that the energy spectra of the Crab pulsar does not follow a power law with an exponential cutoff, but that it extends as a power law after the break at around 5 GeV. This suggests that the emission above 25 GeV is not dominated by the curvatura radiation, which is inconsistent with the standard prediction of the OG and SG models.
We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWCs ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape $left(frac{dN}{dE} = phi_0 left(E/textrm{7 TeV}right)^{-alpha-betalnleft(E/textrm{7 TeV}right)}right)$ with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are $phi_o$=(2.35$pm$0.04$^{+0.20}_{-0.21}$)$times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $alpha$=2.79$pm$0.02$^{+0.01}_{-0.03}$, and $beta$=0.10$pm$0.01$^{+0.01}_{-0.03}$. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are $phi_o$=(2.31$pm$0.02$^{+0.32}_{-0.17}$)$times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $alpha$=2.73$pm$0.02$^{+0.03}_{-0.02}$, and $beta$=0.06$pm$0.01$pm$0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.
The Crab pulsar is the only astronomical pulsed source detected above 100 GeV. The emission mechanism of very high energy gamma-ray pulsation is not yet fully understood, although several theoretical models have been proposed. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of Fermi-LAT data were also analyzed. The known two pulses per period were detected with a significance of 8.0 sigma and 12.6 sigma. In addition, significant bridge emission was found between the two pulses with 6.2 sigma. This emission can not be explained with the existing theories. These data can be used for testing new theoretical models.
We use 73 h of stereoscopic data taken with the MAGIC telescopes to investigate the very high-energy (VHE) gamma-ray emission of the Crab pulsar. Our data show a highly significant pulsed signal in the energy range from 50 to 400 GeV in both the main pulse (P1) and the interpulse (P2) phase regions. We provide the widest spectra to date of the VHE components of both peaks, and these spectra extend to the energy range of satellite-borne observatories. The good resolution and background rejection of the stereoscopic MAGIC system allows us to cross-check the correctness of each spectral point of the pulsar by comparison with the corresponding (strong and well-known) Crab nebula flux. The spectra of both P1 and P2 are compatible with power laws with photon indices of 4.0 pm 0.8 (P1) and 3.42 pm 0.26 (P2), respectively, and the ratio P1/P2 between the photon counts of the two pulses is 0.54 pm 0.12. The VHE emission can be understood as an additional component produced by the inverse Compton scattering of secondary and tertiary epm pairs on IR-UV photons.
HAWC has developed new energy algorithms using an artificial neural network for event-by-event reconstruction of Very High Energy (VHE) primary gamma ray energies. Unlike previous estimation methods for HAWC photons, these estimate photon energies with good energy precision and accuracy in a range from 1 TeV to greater than 100 TeV. Photon emission at the highest energies is of interest in understanding acceleration mechanisms of astrophysical sources and where the acceleration might cut off. We apply the new HAWC reconstruction to present the preliminary measurement of the highest energies at which photons are emitted by the Crab Nebula and by six additional sources in the galactic plane which emit above 50 TeV. We have observed photons above 200 TeV at 95% confidence. We also compare fits to the HAWC Crab spectrum with other measurements and theoretical models of the Crab spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا