Do you want to publish a course? Click here

Detection of supersonic downflows and associated heating events in the transition region above sunspots

237   0   0.0 ( 0 )
 Added by Lucia Kleint
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

IRIS data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.33 arcsec. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km/s and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336 AA, Si IV 1394 AA, and 1403 AA, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in AIA, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.



rate research

Read More

We investigate a small-scale ($approx$ 1.5 Mm along the slit), supersonic downflow of about 90 km s$^{-1}$ in the transition region above the light-bridged sunspot umbra in AR 11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2, from 16:40 to 17:59 UT. The downflow shows up as red-shifted satellite lines of the Si IV and O IV transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the red-shifted satellites of the O IV lines ($N_mathrm{e} = 10^{10.6pm0.25} mathrm{cm}^{-3}$) is only a factor 2 smaller than the one inferred from the main components ($N_mathrm{e} = 10^{10.95pm0.20} mathrm{cm}^{-3}$). Consequently, this implies a substantial mass flux ($approx 5 times 10^{-7}$ g cm$^{-2}$ s$^{-1}$), which would evacuate the overlying corona on time scales of the order of 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop rooted in the central umbra of the spot.
It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have shown that in the solar corona low-FIP elements, such as Fe, Si, Mg, and Ca, are generally enriched relative to high-FIP elements, such as C, N, O, Ar, and Ne. In this paper we report on measurements of plasma composition made during impulsive heating events observed at transition region temperatures with the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these events the intensities of O IV, V, and VI emission lines are enhanced relative to emission lines from Mg V, VI, and VII and Si VI and VII and indicate a composition close to that of the photosphere. Long-lived coronal fan structures, in contrast, show an enrichment of low-FIP elements. We conjecture that the plasma composition is an important signature of the coronal heating process, with impulsive heating leading to the evaporation of unfractionated material from the lower layers of the solar atmosphere and higher frequency heating leading to long-lived structures and the accumulation of low-FIP elements in the corona.
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component
We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from RHESSI provide constraints on the energetic electrons precipitating into the flare footpoints while observations of XRT, AIA, and EIS allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event the intensities in each pixel for the Si IV 1402.770, C II 1334.535, Mg II 2796.354 and O I 1355.598 emission lines are characterized by numerous, small-scale bursts typically lasting 60s or less. Red shifts are observed in Si IV, C II, and Mg II during the impulsive phase. Mg II shows red-shifts during the bursts and stationary emission at other times. The Si IV and C II profiles, in contrast, are observed to be red-shifted at all times during the impulsive phase. These persistent red-shifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.
Aims: The aim of this paper is to demonstrate that millimeter wave data can be used to distinguish between various atmospheric models of sunspots, whose temperature structure in the upper photosphere and chromosphere has been the source of some controversy. Methods: We use observations of the temperature contrast (relative to the quiet Sun) above a sunspot umbra at 3.5 mm obtained with the Berkeley-Illinois-Maryland Array (BIMA), complemented by submm observations from Lindsey & Kopp (1995) and 2 cm observations with the Very Large Array. These are compared with the umbral contrast calculated from various atmospheric models of sunspots. Results: Current mm and submm observational data suggest that the brightness observed at these wavelengths is low compared to the most widely used sunspot models. These data impose strong constraints on the temperature and density stratifications of the sunspot umbral atmosphere, in particular on the location and depth of the temperature minimum and the location of the transition region. Conclusions: A successful model that is in agreement with millimeter umbral brightness should have an extended and deep temperature minimum (below 3000 K). Better spatial resolution as well as better wavelength coverage are needed for a more complete determination of the chromospheric temperature stratification above sunspot umbrae.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا