No Arabic abstract
The mu + 2H -> nu + n + n, mu + 3He -> nu + 3H, mu + 3He -> nu + n + d and mu + 3He -> nu + n + n + p capture reactions are studied with various realistic potentials under full inclusion of final state interactions. Our results for the two- and three-body break-up of 3He are calculated with a variety of nucleon-nucleon potentials, among which is the AV18 potential, augmented by the Urbana~IX three-nucleon potential. Most of our results are based on the single nucleon weak current operator. As a first step, we have tested our calculation in the case of the mu + 2H -> nu + n + n and mu + 3He -> nu + 3H reactions, for which theoretical predictions obtained in a comparable framework are available. Additionally, we have been able to obtain for the first time a realistic estimate for the total rates of the muon capture reactions on 3He in the break-up channels: 544 1/s and 154 1/s for the n + d and n + n + p channels, respectively. Our results have also been compared with the most recent experimental data, finding a rough agreement for the total capture rates, but failing to reproduce the differential capture rates.
The muon capture rate in the reaction mu- 3He -> nu + 3H has been measured at PSI using a modular high pressure ionization chamber. The rate corresponding to statistical hyperfine population of the mu-3He atom is (1496.0 +- 4.0) s^-1. This result confirms the PCAC prediction for the pseudoscalar form factors of the 3He-3H system and the nucleon.
We present an overview of concepts and results obtained with statistical models in study of nuclear multifragmentation. Conceptual differences between statistical and dynamical approaches, and selection of experimental observables for identification of these processes, are outlined. New and perspective developments, like inclusion of in-medium modifications of the properties of hot primary fragments, are discussed. We list important applications of statistical multifragmentation in other fields of research.
We investigate a large angle photodisintegration of two nucleons from the $^3$He nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard NN scattering, the HRM allows to express the amplitude of a two-nucleon break-up reaction through the convolution of photon-quark scattering, $NN$ hard scattering amplitude and nuclear spectral function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for $NN$ scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as $s^{-11}$. Secondly, the $s^{11}$ weighted cross section will have the shape of energy dependence similar to that of $s^{10}$ weighted $NN$ elastic scattering cross section. Also one predicts an enhancement of the $pp$ breakup relative to the $pn$ breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of $pp$ and $pn$ breakup cross sections. This is due to the fact that same-helicity $pp$-component is strongly suppressed in the ground state wave function of $^3$He. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer $NN$ breakup reactions for circularly polarized photons. For the $pp$ breakup this asymmetry is predicted to be zero while for the $pn$ it is close to ${2over 3}$.
An ab initio quantum Monte Carlo method is introduced for calculating total rates of muon weak capture in light nuclei with mass number $A leq 12$. As a first application of the method, we perform a calculation of the rate in $^4$He in a dynamical framework based on realistic two- and three-nucleon interactions and realistic nuclear charge-changing weak currents. The currents include one- and two-body terms induced by $pi$- and $rho$-meson exchange, and $N$-to-$Delta$ excitation, and are constrained to reproduce the empirical value of the Gamow-Teller matrix element in tritium. We investigate the sensitivity of theoretical predictions to current parametrizations of the nucleon axial and induced pseudoscalar form factors as well as to two-body contributions in the weak currents. The large uncertainties in the measured values obtained from bubble-chamber experiments (carried out over 50 years ago) prevent us from drawing any definite conclusions.
On the basis of the idea of mixing (interaction) between the electron capture and the positron emission channels in the beta^+ decay in the cases when both channels are energetically allowed, we attempt to explain oscillations of the K-capture rates that were possibly seen in the recent experiment.