Do you want to publish a course? Click here

Extrasolar Binary Planets I: Formation by tidal capture during planet-planet scattering

127   0   0.0 ( 0 )
 Added by Makiko Nagasawa
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call binary planets) from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term orbital evolution due to planet-planet and planet-star {it quasi-static} tides. For the initial evolution in phase i), we carried out N-body simulations of the systems consisting of three jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing and this fraction is almost independent of the initial stellarcentric semi-major axes of the planets, while ejection and merging rates sensitively depend on the semi-major axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in later phase ii). The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for main-sequence life time of solar-type stars (~10Gyrs), if the binary planets are beyond ~0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at >0.3AU.



rate research

Read More

Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-planet scattering in 2-planet systems. Spin can evolve dramatically due to spin-orbit coupling made possible by the evolving spin and orbital precession during the planet-planet scattering phase. The main source of torque to planet spin is the stellar torque, and the total planet-plane torque contribution is negligible. As a consequence of the evolution of the spin, planets can end up with significant obliquity (the angle between a planets own orbit normal and spin axis) like planets in our Solar System.
107 - Margaret Pan 2017
A commonly noted feature of the population of multi-planet extrasolar systems is the rarity of planet pairs in low-order mean-motion resonances. We revisit the physics of resonance capture via convergent disk-driven migration. We point out that for planet spacings typical of stable configurations for Kepler systems, the planets can routinely maintain a small but nonzero eccentricity due to gravitational perturbations from their neighbors. Together with the upper limit on the migration rate needed for capture, the finite eccentricity can make resonance capture difficult or impossible in Sun-like systems for planets smaller than ~Neptune-sized. This mass limit on efficient capture is broadly consistent with observed exoplanet pairs that have mass determinations: of pairs with the heavier planet exterior to the lighter planet -- which would have been undergoing convergent migration in their disks -- those in or nearly in resonance are much more likely to have total mass greater than two Neptune masses than to have smaller masses. The agreement suggests that the observed paucity of resonant pairs around sun-like stars may simply arise from a small resonance capture probability for lower-mass planets. Planet pairs that thereby avoid resonance capture are much less likely to collide in an eventual close approach than to simply migrate past one another to become a divergently migrating pair with the lighter planet exterior. For systems around M stars we expect resonant pairs to be much more common, since there the minimum mass threshhold for efficient capture is about an Earth mass.
Wide-orbit exoplanets are starting to be detected, and planetary formation models are under development to understand their properties. We propose a population of Oort planets around other stars, forming by a mechanism analogous to how the Solar Systems Oort cloud of comets was populated. Gravitational scattering among planets is inferred from the eccentricity distribution of gas-giant exoplanets measured by the Doppler technique. This scattering is thought to commence while the protoplanetary disk is dissipating, $10^6-10^7$ yr after formation of the star, or perhaps soon thereafter, when the majority of stars are expected to be part of a natal cluster. Previous calculations of planet-planet scattering around isolated stars have one or more planets spending $10^4-10^7$ yr at distances >100 AU before ultimately being ejected. During that time, a close flyby of another star in the cluster may dynamically lift the periastron of the planet, ending further scattering with the inner planets. We present numerical simulations demonstrating this mechanism as well as an analysis of the efficiency. We estimate an occurrence of planets between 100 and 5000 AU by this mechanism to be <1% for gas giants and up to a few percent for Neptunes and super-Earths.
Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is $sim 10%$, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.
The (yet-to-be confirmed) discovery of a Neptune-sized moon around the ~3.2 Jupiter-mass planet in Kepler 1625 puts interesting constraints on the formation of the system. In particular, the relatively wide orbit of the moon around the planet, at ~40 planetary radii, is hard to reconcile with planet formation theories. We demonstrate that the observed characteristics of the system can be explained from the tidal capture of a secondary planet in the young system. After a quick phase of tidal circularization, the lunar orbit, initially much tighter than 40 planetary radii, subsequently gradually widened due to tidal synchronization of the spin of the planet with the orbit, resulting in a synchronous planet-moon system. Interestingly, in our scenario the captured object was originally a Neptune-like planet, turned into a moon by its capture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا