No Arabic abstract
Mixed order phase transitions (MOT), which display discontinuous order parameter and diverging correlation length, appear in several seemingly unrelated settings ranging from equilibrium models with long-range interactions to models far from thermal equilibrium. In a recent paper [1] an exactly soluble spin model with long-range interactions that exhibits MOT was introduced and analyzed both by a grand canonical calculation and a renormalization group analysis. The model was shown to lay a bridge between two classes of one dimensional models exhibiting MOT, namely between spin models with inverse distance square interactions and surface depinning models. In this paper we elaborate on the calculations done in [1]. We also analyze the model in the canonical ensemble, which yields a better insight into the mechanism of MOT. In addition, we generalize the model to include Potts and general Ising spins, and also consider a broader class of interactions which decay with distance with a power law different from 2.
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions which exhibits a mixed order transition (MOT), namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models which are seemingly unrelated. The model we present serves as a link between two classes of models which exhibit MOT in one dimension, namely, spin models with a coupling constant which decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.
It is shown that solvable mixed spin ladder models can be constructed from su(N) permutators. Heisenberg rung interactions appear as chemical potential terms in the Bethe Ansatz solution. Explicit examples given are a mixed spin-1/2 spin-1 ladder, a mixed spin-1/2 spin-3/2 ladder and a spin-1 ladder with biquadratic interactions.
We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially-condensed phase is the most interesting, compared to that in the original SB problem.
We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as boundary degeneracy) does not require superconducting proximity effect and can be created by simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016)]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme is experimentally reasonable.
The mixed spin-(1/2, 1) Ising model on two fully frustrated triangles-in-triangles lattices is exactly solved with the help of the generalized star-triangle transformation, which establishes a rigorous mapping correspondence with the equivalent spin-1/2 Ising model on a triangular lattice. It is shown that the mutual interplay between the spin frustration and single-ion anisotropy gives rise to various spontaneously ordered and disordered ground states, which differ mainly in an occurrence probability of the non-magnetic spin state of the integer-valued decorating spins. We have convincingly evidenced a possible coexistence of the spontaneous long-range order with a partial disorder within the striking ordered-disordered ground state, which manifest itself through a non-trivial criticality at finite temperatures as well. A rather rich critical behaviour including the order-from-disorder effect and reentrant phase transitions with either two or three successive critical points is also found.