Do you want to publish a course? Click here

The mass-metallicity and fundamental metallicity relations at z>2 using VLT and Subaru near-infrared spectroscopy of zCOSMOS galaxies

131   0   0.0 ( 0 )
 Added by Christian Maier
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the local universe, there is good evidence that, at a given stellar mass M, the gas-phase metallicity Z is anti-correlated with the star formation rate (SFR) of the galaxies. It has also been claimed that the resulting Z(M,SFR) relation is invariant with redshift - the so-called Fundamental Metallicity Relation (FMR). Given a number of difficulties in determining metallicities, especially at higher redshifts, the form of the Z(M,SFR) relation and whether it is really independent of redshift is still very controversial. To explore this issue at z>2, we used VLT-SINFONI and Subaru-MOIRCS near-infrared spectroscopy of 20 zCOSMOS-deep galaxies at 2.1<z<2.5 to measure the strengths of up to five emission lines: [OII], Hbeta, [OIII], Halpha, and [NII]. This near-infrared spectroscopy enables us to derive O/H metallicities, and also SFRs from extinction corrected Halpha measurements. We find that the mass-metallicity relation (MZR) of these star-forming galaxies at z~2.3 is lower than the local SDSS MZR by a factor of three to five, a larger change than found by Erb et al. (2006) using [NII]/Halpha-based metallicities from stacked spectra. We discuss how the different selections of the samples and metallicity calibrations used may be responsible for this discrepancy. The galaxies show direct evidence that the SFR is still a second parameter in the mass-metallicity relation at these redshifts. However, determining whether the Z(M,SFR) relation is invariant with epoch depends on the choice of extrapolation used from local samples, because z>2 galaxies of a given mass have much higher SFRs than the local SDSS galaxies. We find that the zCOSMOS galaxies are consistent with a non-evolving FMR if we use the physically-motivated formulation of the Z(M,SFR) relation from Lilly et al. (2003), but not if we use the empirical formulation of Mannucci et al. (2010).



rate research

Read More

159 - C. Maier 2014
(Abridged) The knowledge of the number and of the physical nature of low-metallicity massive galaxies is crucial for the determination and interpretation of the mass-metallicity relation (MZR). Using VLT-ISAAC near-infrared (NIR) spectroscopy of 39 zCOSMOS z~0.7 galaxies, we have measured Halpha and [NII] emission line fluxes for galaxies with [OII], Hbeta and [OIII] available from VIMOS optical spectroscopy. The NIR spectroscopy enables us to break the degeneracy of the R23 method to derive unambiguously O/H gas metallicities, and also SFRs from extinction corrected Halpha. Using, as a benchmark, the position in the D4000 vs. [OIII]/Hbeta diagram of galaxies with reliable O/Hs from NIR spectroscopy, we were able to break the lower/upper branch R23 degeneracy of additional 900 zCOSMOS z~0.7 galaxies. Additionally, the Halpha-based SFR measurements were used to find the best SFR calibration based on [OII] for the zCOSMOS z~0.7 galaxies without Halpha measurements. We find a fraction of 19% of lower mass 9.5<logM/Msun<10.3 zCOSMOS galaxies which shows a larger evolution of the MZR relation, compared to higher mass galaxies, being more metal poor at a given mass by a factor of 2-3 compared to SDSS. This indicates that the low-mass MZR slope is getting steeper at z~0.7 compared to local galaxies. The existence of these metal-poor galaxies at z~0.7 can be interpreted as the chemical version of galaxy downsizing. Moreover, the sample of zCOSMOS galaxies shows direct evidence that SFR influences the MZR at these redshifts. The comparison of the measured metallicities for the zCOSMOS sample with the values expected for a non-evolving fundamental metallicity relation (FMR) shows broadly agreement, and reveals that also galaxies with lower metallicities and typically higher (specific) SFRs, as found in our zCOSMOS sample at z~0.7, are in agreement with the predictions of a non-evolving Z(M,SFR).
We present near-infrared spectroscopic observations of star-forming galaxies at z~1.4 with FMOS on the Subaru Telescope. We observed K-band selected galaxies in the SXDS/UDS fields with K<23.9 mag, 1.2<z_ph<1.6, M*>10^{9.5} Msun, and expected F(Halpha)>10^{-16} erg s^{-1} cm^{-2}. 71 objects in the sample have significant detections of Halpha. For these objects, excluding possible AGNs identified from the BPT diagram, gas-phase metallicities are obtained from [NII]/Halpha line ratio. The sample is split into three stellar mass bins, and the spectra are stacked in each stellar mass bin. The mass-metallicity relation obtained at z~1.4 is located between those at z~0.8 and z~2.2. We constrain an intrinsic scatter to be ~0.1 dex or larger in the mass-metallicity relation at z~1.4; the scatter may be larger at higher redshifts. We found trends that the deviation from the mass-metallicity relation depends on the SFR and the half light radius: Galaxies with higher SFR and larger half light radii show lower metallicities at a given stellar mass. One possible scenario for the trends is the infall of pristine gas accreted from IGM or through merger events. Our data points show larger scatter than the fundamental metallicity relation (FMR) at z~0.1 and the average metallicities slightly deviate from the FMR. The compilation of the mass-metallicity relations at z~3 to z~0.1 shows that they evolve smoothly from z~3 to z~0 without changing the shape so much except for the massive part at z~0.
183 - C. Maier 2014
A relation between the stellar mass M and the gas-phase metallicity Z of galaxies, the MZR, is observed up to higher redshifts. It is a matter of debate, however, if the SFR is a second parameter in the MZR. To explore this issue at z > 1, we used VLT-SINFONI near-infrared (NIR) spectroscopy of eight zCOSMOS galaxies at 1.3 < z < 1.4 to measure the strengths of four emission lines: Hbeta, [OIII]lambda5007, Halpha, and [NII]lambda6584, additional to [OII]lambda3727 measured from VIMOS. We derive reliable O/H metallicities based on five lines, and also SFRs from extinction corrected Halpha measurements. We find that the MZR of these star-forming galaxies at z~1.4 is lower than the local SDSS MZR by a factor of three to five, a larger change than reported in the literature using [NII]/Halpha-based metallicities from individual and stacked spectra. Correcting N2-based O/Hs using recent results by Newman et al. (2014), also the larger FMOS sample at z~1.4 of Zahid et al. (2014) shows a similar evolution of the MZR like the zCOSMOS objects. These observations seem also in agreement with a non-evolving FMR using the physically motivated formulation of the FMR from Lilly et al. (2013).
We present the results from a large near-infrared spectroscopic survey with Subaru/FMOS (textit{FastSound}) consisting of $sim$ 4,000 galaxies at $zsim1.4$ with significant H$alpha$ detection. We measure the gas-phase metallicity from the [N~{sc ii}]$lambda$6583/H$alpha$ emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation with star-formation rate is found. Our result at $zsim1.4$ is roughly in agreement with the fundamental metallicity relation at $zsim0.1$ with fiber aperture corrected star-formation rate. We detect significant [S~{sc ii}]$lambdalambda$6716,6731 emission lines from the composite spectra. The electron density estimated from the [S~{sc ii}]$lambdalambda$6716,6731 line ratio ranges from 10 -- 500 cm$^{-3}$, which generally agrees with that of local galaxies. On the other hand, the distribution of our sample on [N~{sc ii}]$lambda$6583/H$alpha$ vs. [S~{sc ii}]$lambdalambda$6716,6731/H$alpha$ is different from that found locally. We estimate the nitrogen-to-oxygen abundance ratio (N/O) from the N2S2 index, and find that the N/O in galaxies at $zsim1.4$ is significantly higher than the local values at a fixed metallicity and stellar mass. The metallicity at $zsim1.4$ recalculated with this N/O enhancement taken into account decreases by 0.1 -- 0.2 dex. The resulting metallicity is lower than the local fundamental metallicity relation.
204 - Y. I. Izotov 2015
We study relations between global characteristics of low-redshift (0 < z < 1) compact star-forming galaxies, including absolute optical magnitudes, Hbeta emission-line luminosities (or equivalently star-formation rates), stellar masses, and oxygen abundances. The sample consists of 5182 galaxies with high-excitation HII regions selected from the SDSS DR7 and SDSS/BOSS DR10 surveys adopting a criterion [OIII]4959/Hbeta > 1. These data were combined with the corresponding data for high-redshift (2 < z < 3) star-forming galaxies. We find that in all diagrams low-z and high-z star-forming galaxies are closely related indicating a very weak dependence of metallicity on stellar mass, redshift, and star-formation rate. This finding argues in favour of the universal character of the global relations for compact star-forming galaxies with high-excitation HII regions over redshifts 0 < z < 3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا