No Arabic abstract
We discuss the 3.55 keV X-ray line anomaly reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy in a radiative neutrino model, in which the mixing between the active neutrino and the dark matter is generated at two-loop level after the spontaneous breaking of $Z_2$ symmetry. It might provide us a natural explanation of its tiny mixing ${cal O}(10^{-10})$, which is observed by their experiments. Such an Abelian discrete symmetry plays a crucial role in differentiating the TeV scale Majorana field from our dark matter, whose mass is expect to be around 7.1 keV.
We study an exciting dark matter scenario in a radiative neutrino model to explain the X-ray line signal at $3.55$ keV recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. We show that the required large cross section for the up-scattering process to explain the X-ray line can be obtained via the resonance of the pseudo-scalar. Moreover this model can be compatible with the thermal production of dark matter and the constraint from the direct detection experiment.
We consider an extension of Zee-Babu model to explain the smallness of neutrino masses. (1) We extend the lepton number symmetry of the original model to local $B-L$ symmetry. (2) We introduce three Dirac dark matter candidates with flavor-dependent $B-L$ charges. After the spontaneous breaking of $B-L$, a discrete symmetry $Z_6$ remains, which guarantees the stability of dark matter. Then the model can explain the 3.5 keV X-ray line signal with decaying dark matter. We also introduce a real scalar field which is singlet under both the SM and $U(1)_{B-L}$ and can explain the current relic abundance of the Dirac fermionic DMs. If the mixing with the SM Higgs boson is small, it does not contribute to DM direct detection. The main contribution to the scattering of DM off atomic nuclei comes from the exchange of $U(1)_{B-L}$ gauge boson, $Z$, and is suppressed below current experimental bound when $Z$ mass is heavy ($gtrsim 10$ TeV). If the singlet scalar mass is about 0.1--10 MeV, DM self-interaction can be large enough to solve small scale structure problems in simulations with the cold DM, such as, the core-vs-cusp problem and too-big-to-fail problem.
We study a light dark matter in a radiative neutrino model to explain the X-ray line signal at about $3.5$ keV recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. The signal requires very tiny mixing between the dark matter and an active neutrino; $sin^2 2thetaapprox 10^{-10}$. It could suggest that such a light dark matter cannot contribute to the observed neutrino masses if we use the seesaw mechanism. In other words, neutrino masses might come a structure different from the dark matter. We propose a model in which Dirac type active neutrino masses are induced at one-loop level. On the other hand the mixing between active neutrino and dark matter are generated at two-loop level. As a result we can explain both the observed neutrino masses and the X-ray line signal from the dark matter decay with rather mild hierarchy of parameters in TeV scale.
We study the 3.55 keV X-ray suspected to arise from dark matter in our model of dark matter consisting of a bubble of a new phase of the vacuum, the surface tension of which keeps ordinary matter under high pressure inside the bubble. We consider t
Galaxy clusters can efficiently convert axion-like particles (ALPs) to photons. We propose that the recently claimed detection of a 3.55--3.57 keV line in the stacked spectra of a large number of galaxy clusters and the Andromeda galaxy may originate from the decay of either a scalar or fermionic $7.1$ keV dark matter species into an axion-like particle (ALP) of mass $m_{a} lesssim 6cdot 10^{-11}~{rm eV}$, which subsequently converts to a photon in the cluster magnetic field. In contrast to models in which the photon line arises directly from dark matter decay or annihilation, this can explain the anomalous line strength in the Perseus cluster. As axion-photon conversion scales as $B^2$ and cool core clusters have high central magnetic fields, this model can also explains the observed peaking of the line emission in the cool cores of the Perseus, Ophiuchus and Centaurus clusters, as opposed to the much larger dark matter halos. We describe distinctive predictions of this scenario for future observations.