Do you want to publish a course? Click here

A uvbyCaHbeta Analysis of the Old Open Cluster, NGC 6819

114   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 6819 is a richly populated, older open cluster situated within the Kepler field. A CCD survey of the cluster on the uvbyCaHbeta system, coupled with proper-motion membership, has been used to isolate 382 highly probable, single-star unevolved main-sequence members over a 20-arcminute field centered on the cluster. From 278 F dwarfs with high precision photometry in all indices, a mean reddening of E(b-y) = 0.117 +/- 0.005 or E(B-V) = 0.160 +/- 0.007 is derived, where the standard errors of the mean include both internal errors and the photometric zero-point uncertainty. With the reddening fixed, the metallicity derived from the same 278 stars is [Fe/H] = -0.116 +/- 0.101 from m_1 and -0.055 +/- 0.033 from hk, for a weighted average of [Fe/H] = -0.06 +/- 0.04, where the quoted standard errors of the mean values include the internal errors from the photometric scatter plus the uncertainty in the photometric zero points. If metallicity is derived using individual reddening values for each star to account for potential reddening variation across the face of the cluster, the analogous result is unchanged. The cluster members at the turnoff of the color-magnitude diagram are used to test and confirm the recently discovered variation in reddening across the face of the cluster, with a probable range in the variation of Delta[E(B-V)] = 0.045 +/-0.015. With the slightly higher reddening and lower [Fe/H] compared to commonly adopted values, isochrone fitting leads to an age of 2.3 +/- 0.2 Gyr for an apparent modulus of (m-M) = 12.40 +/-0.12.



rate research

Read More

Precision uvbyCaHbeta photometry of the nearby old open cluster, NGC 752, is presented. The mosaic of CCD fields covers an area ~42 on a side with internal precision at the 0.005 to 0.010 mag level for the majority of stars down to V~15. The CCD photometry is tied to the standard system using an extensive set of published photoelectric observations adopted as secondary standards within the cluster. Multicolor indices are used to eliminate as nonmembers a large fraction of the low probability proper-motion members near the faint end of the main sequence, while identifying 24 potential dwarf members between V=15.0 and 16.5, eight of which have been noted before from Vilnius photometry. From 68 highly probable F dwarf members, we derive a reddening estimate of E(b-y)= 0.025 +/- 0.003 (E(B-V) = 0.034 +/- 0.004), where the error includes the internal photometric uncertainty and the systematic error arising from the choice of the standard (b-y), Hbeta relation. With reddening fixed, [Fe/H] is derived from the F dwarf members using both m_1 and hk, leading to [Fe/H] = -0.071 +/-0.014 (sem) and -0.017 +/- 0.008 (sem), respectively. Taking the internal precision and possible systematics in the standard relations into account, [Fe/H] for NGC 752 becomes -0.03 +/-0.02. With the reddening and metallicity defined, we use the Victoria-Regina isochrones on the Stromgren system and find an excellent match for (m-M) = 8.30 +/- 0.05 and an age of 1.45 +/- 0.05 Gyr at the appropriate metallicity.
142 - Giovanni Carraro 2011
NGC 5822 is a richly populated, moderately nearby, intermediate-age open cluster covering an area larger than the full moon on the sky. A CCD survey of the cluster on the UBVI and uvbyCaHbeta systems shows that the cluster is superposed upon a heavily reddened field of background stars with E(B-V) > 0.35 mag, while the cluster has small and uniform reddening at E(b-y) = 0.075 +/- 0.008 mag or E(B-V) = 0.103 +/- 0.011 mag, based upon 48 and 61 probable A and F dwarf single-star members, respectively. The errors quoted include both internal photometric precision and external photometric uncertainties. The metallicity derived from 61 probable single F-star members is [Fe/H] = -0.058 +/- 0.027 (sem) from m_1 and 0.010 +/- 0.020 (sem) from hk, for a weighted average of [Fe/H] = -0.019 +/- 0.023, where the errors refer to the internal errors from the photometry alone. With reddening and metallicity fixed, the cluster age and apparent distance modulus are obtained through a comparison to appropriate isochrones in both VI and BV, producing 0.9 +/- 0.1 Gyr and 9.85 +/- 0.15, respectively. The giant branch remains dominated by two distinct clumps of stars, though the brighter clump seems a better match to the core-He-burning phase while the fainter clump straddles the first-ascent red giant branch. Four potential new clump members have been identified, equally split between the two groups. Reanalysis of the UBV two-color data extending well down the main sequence shows it to be optimally matched by reddening near E(B-V) = 0.10 rather than the older value of 0.15, leading to [Fe/H] between -0.16 and 0.00 from the ultraviolet excess of the unevolved dwarfs. The impact of the lower reddening and younger age of the cluster on previous analyses of the cluster is discussed.
High-dispersion spectra of 333 stars in the open cluster NGC 6819, obtained using the HYDRA spectrograph on the WIYN 3.5m telescope, have been analyzed to determine the abundances of iron and other metals from lines in the 400 A region surrounding the Li 6708 A line. Our spectra, with signal-to-noise per pixel (SNR) ranging from 60 to 300, span the luminosity range from the tip of the red giant branch to a point two magnitudes below the top of the cluster turnoff. We derive radial and rotational velocities for all stars, as well as [Fe/H] based on 17 iron lines, [Ca/H], [Si/H], and [Ni/H] in the 247 most probable, single members of the cluster. Input temperature estimates for model atmosphere analysis are provided by (B-V) colors merged from several sources, with individual reddening corrections applied to each star relative to a cluster mean of E(B-V) = 0.16. Extensive use is made of ROBOSPECT, an automatic equivalent width measurement program; its effectiveness on large spectroscopic samples is discussed. From the sample of likely single members, [Fe/H] = -0.03 +/- 0.06, where the error describes the median absolute deviation about the sample median value, leading to an internal precision for the cluster below 0.01 dex. The final uncertainty in the cluster abundance is therefore dominated by external systematics due to the temperature scale, surface gravity, and microturbulent velocity, leading to [Fe/H] = -0.02 +/- 0.02 for a sub-sample restricted to main sequence and turnoff stars. This result is consistent with our recent intermediate-band photometric determination of a slightly subsolar abundance for this cluster. [Ca/Fe], [Si/Fe], and [Ni/Fe] are determined to be solar within the uncertainties. NGC 6819 has an abundance distribution typical of solar metallicity thin disk stars in the solar neighborhood.
We analyze extensive BVR_cI_c time-series photometry and radial-velocity measurements for WOCS 40007 (Auner 259; KIC 5113053), a double-lined detached eclipsing binary and a member of the open cluster NGC 6819. Utilizing photometric observations from the 1-meter telescope at Mount Laguna Observatory and spectra from the WIYN 3.5-meter telescope, we measure precise and accurate masses (~1.6% uncertainty) and radii (~0.5%) for the binary components. In addition, we discover a third star orbiting the binary with a period greater than 3000 days using radial velocities and Kepler eclipse timings. Because the stars in the eclipsing binary are near the cluster turnoff, they are evolving rapidly in size and are sensitive to age. With a metallicity of [Fe/H]=+0.09+/-0.03, we find the age of NGC 6819 to be about 2.4 Gyr from CMD isochrone fitting and 3.1+/-0.4 Gyr by analyzing the mass-radius (M-R) data for this binary. The M-R age is above previous determinations for this cluster, but consistent within 1 sigma uncertainties. When the M-R data for the primary star of the additional cluster binary WOCS 23009 is included, the weighted age estimate drops to 2.5+/-0.2 Gyr, with a systematic uncertainty of at least 0.2 Gyr. The age difference between our CMD and M-R findings may be the result of systematic error in the metallicity or helium abundance used in models, or due to slight radius inflation of one or both stars in the WOCS 40007 binary.
Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819 -- one of four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation and the frequency of maximum oscillation power. We find that the asteroseismic parameters allow us to test cluster-membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about two orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا