Twisted Alexander polynomials and ideal points giving Seifert surfaces


Abstract in English

The coefficients of twisted Alexander polynomials of a knot induce regular functions of the $SL_2(mathbb{C})$-character variety. We prove that the function of the highest degree has a finite value at an ideal point which gives a minimal genus Seifert surface by Culler-Shalen theory. It implies a partial affirmative answer to a conjecture by Dunfield, Friedl and Jackson.

Download