No Arabic abstract
We present a detailed characterization of the recently discovered i-$R$-Cd ($R$ = Y, Gd-Tm) binary quasicrystals by means of x-ray diffraction, temperature-dependent dc and ac magnetization, temperature-dependent resistance and temperature-dependent specific heat measurements. Structurally, the broadening of x-ray diffraction peaks found for i-$R$-Cd is dominated by frozen-in phason strain, which is essentially independent of $R$. i-Y-Cd is weakly diamagnetic and manifests a temperature-independent susceptibility. i-Gd-Cd can be characterized as a spin-glass below 4.6 K via dc magnetization cusp, a third order non-linear magnetic susceptibility peak, a frequency-dependent freezing temperature and a broad maximum in the specific heat. i-$R$-Cd ($R$ = Ho-Tm) is similar to i-Gd-Cd in terms of features observed in thermodynamic measurements. i-Tb-Cd and i-Dy-Cd do not show a clear cusp in their zero-field-cooled dc magnetization data, but instead show a more rounded, broad local maximum. The resistivity for i-$R$-Cd is of order 300 $mu Omega$ cm and weakly temperature-dependent. The characteristic freezing temperatures for i-$R$-Cd ($R$ = Gd-Tm) deviate from the de Gennes scaling, in a manner consistent with crystal electric field splitting induced local moment anisotropy.
We use high resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the $Gamma$ point and two intersecting electron pockets at the $X$ point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the $Gamma$ point. Due to the lanthanide contraction, the unit cell of different rare-earth monoantimonides shrinks when changing rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which is demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the $X$ point seem to be touching the valence bands, forming a four-fold degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the $X$ point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the $Gamma$ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.
The time-differential perturbed-angular-correlation (TDPAC) technique was applied to the study of the internal electric-field gradient (EFG) in Eu- and Ho-sesquioxides in their cubic bixbyite phases. The results, as well as previous characterizations of the EFG at $^{181}$Ta sites in oxides with the bixbyite structure, were compared to those obtained in experiments using $^{111}$Cd as probe, and to point-charge model and {it ab initio} results calculations for the EFG tensor at impurity sites in binary oxides. These studies provide quantitative information about electronic processes and the structural relaxations induced by the presence of impurity probes in the host lattices, and confirm the existence of nonionic contributions to the EFG in these systems. Our FP-LAPW calculations show that this nonionic contribution to the EFG is the dominating one, and that it is originated in the population of {it p} states (5{it p} in the case of Cd, 6{it p} for Ta).
We have synthesized R5Pb3 (R = Gd-Tm) compounds in polycrystalline form and performed structural analysis, magnetization, and neutron scattering measurements. For all R5Pb3 reported here the Weiss temperatures {theta}W are several times smaller than the ordering temperatures TORD, while the latter are remarkably high (TORD up to 275 K for R = Gd) compared to other known R-M binaries (M = Si, Ge, Sn and Sb). The magnetic order changes from ferromagnetic in R = Gd, Tb to antiferromagnetic in R = Dy-Tm. Below TORD, the magnetization measurements together with neutron powder diffraction show complex magnetic behavior and reveal the existence of up to three additional phase transitions. We believe this to be a result of crystal electric field effects responsible for high magnetocrystalline anisotropy. The R5Pb3 magnetic unit cells for R = Tb-Tm can be described with incommensurate magnetic wave vectors with spin modulation either along the c axis in R = Tb, Er and Tm or within the ab-plane in R = Dy and Ho.
Ru{1-x}Sn{x}Sr2EuCu2O8 and Ru{1-x}Sn{x}Sr2GdCu2O8 have been comprehensively studied by microwave and dc resistivity and magnetoresistivity and by the dc Hall measurements. The magnetic ordering temperature T_m is considerably reduced with increasing Sn content. However, doping with Sn leads to only slight reduction of the superconducting critical temperature T_c accompanied with the increase of the upper critical field B_c2, indicating an increased disorder in the system and a reduced scattering length of the conducting holes in CuO2 layers. In spite of the increased scattering rate, the normal state resistivity and the Hall resistivity are reduced with respect to the pure compound, due to the increased number of itinerant holes in CuO2 layers, which represent the main conductivity channel. Most of the electrons in RuO2 layers are presumably localized, but the observed negative magnetoresistance and the extraordinary Hall effect lead to the conclusion that there exists a small number of itinerant electrons in RuO$_2$ layers that exhibit colossal magnetoresistance.
Single crystals of $R$Mg$_{2}$Cu$_{9}$ ($R$=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat and temperature-, field-dependent resistivity and anisotropic magnetization. YMg$_{2}$Cu$_{9}$ is a non-local-moment-bearing metal with an electronic specific heat coefficient, $gamma sim$ 15 mJ/mol K$^2$. Yb is divalent and basically non-moment bearing in YbMg$_{2}$Cu$_{9}$. Ce is trivalent in CeMg$_{2}$Cu$_{9}$ with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg$_{2}$Cu$_{9}$ does not exhibit any magnetic phase transition down to 0.5 K. The other members being studied ($R$=Nd, Gd-Dy) all exhibits antiferromagnetic transitions at low-temperatures ranging from 3.2 K for NdMg$_{2}$Cu$_{9}$ to 11.9 K for TbMg$_{2}$Cu$_{9}$. Whereas GdMg$_{2}$Cu$_{9}$ is isotropic in its paramagnetic state due to zero angular momentum ($L$=0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y$_{0.99}$Tb$_{0.01}$)Mg$_{2}$Cu$_{9}$ and (Y$_{0.99}$Dy$_{0.01}$)Mg$_{2}$Cu$_{9}$. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.