No Arabic abstract
Several real problems ranging from text classification to computational biology are characterized by hierarchical multi-label classification tasks. Most of the methods presented in literature focused on tree-structured taxonomies, but only few on taxonomies structured according to a Directed Acyclic Graph (DAG). In this contribution novel classification ensemble algorithms for DAG-structured taxonomies are introduced. In particular Hierarchical Top-Down (HTD-DAG) and True Path Rule (TPR-DAG) for DAGs are presented and discussed.
In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem, or close variants thereof, have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et.al. that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. Our results show improved performance on most but not all of the domains.
Traditional recommendation systems are faced with two long-standing obstacles, namely, data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Over the last decade, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey paper, we first proposed a two-level taxonomy of cross-domain recommendation which classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.
We address the problem of speech act recognition (SAR) in asynchronous conversations (forums, emails). Unlike synchronous conversations (e.g., meetings, phone), asynchronous domains lack large labeled datasets to train an effective SAR model. In this paper, we propose methods to effectively leverage abundant unlabeled conversational data and the available labeled data from synchronous domains. We carry out our research in three main steps. First, we introduce a neural architecture based on hierarchical LSTMs and conditional random fields (CRF) for SAR, and show that our method outperforms existing methods when trained on in-domain data only. Second, we improve our initial SAR models by semi-supervised learning in the form of pretrained word embeddings learned from a large unlabeled conversational corpus. Finally, we employ adversarial training to improve the results further by leveraging the labeled data from synchronous domains and by explicitly modeling the distributional shift in two domains.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
This paper generalizes an important result from the PAC-Bayesian literature for binary classification to the case of ensemble methods for structured outputs. We prove a generic version of the Cbound, an upper bound over the risk of models expressed as a weighted majority vote that is based on the first and second statistical moments of the votes margin. This bound may advantageously $(i)$ be applied on more complex outputs such as multiclass labels and multilabel, and $(ii)$ allow to consider margin relaxations. These results open the way to develop new ensemble methods for structured output prediction with PAC-Bayesian guarantees.