Do you want to publish a course? Click here

Structural Changes Related to the Magnetic Transitions in Hexagonal InMnO3

233   0   0.0 ( 0 )
 Added by Trevor A. Tyson
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two magnetic ordering transitions are found in InMnO3, the paramagnetic to antiferromagnetic transition near ~118 K and a lower possible spin rotation transition near ~42 K. Multiple length scale structural measurements reveal enhanced local distortion found to be connected with tilting of the MnO5 polyhedra as temperature is reduced. Strong coupling is observed between the lattice and the spin manifested as changes in the structure near both of the magnetic ordering temperatures (at ~42 K and ~ 118 K). External parameters such as pressure are expected to modify the coupling.



rate research

Read More

We investigate the structural and magnetic phase transitions in EuTi1-xNbxO3 with synchrotron powder X-ray diffraction (XRD), resonant ultrasound spectroscopy (RUS), and magnetization measurements. Upon Nb-doping, the Pm-3m to I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long range ferromagnetic order is observed in the samples containing more than 10% Nb. The structural transition in pure and doped compounds is marked by a step-like softening of the elastic moduli in a narrow temperature interval near TS, which resembles that of SrTiO3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO3.
To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (TN). Using the symmetry analysis, we show that unlike most antiferromagnetic rare-earth transition-metal perovskites, a larger structural distortion leads to a higher TN in hexagonal ferrites and manganites, because the K3 structural distortion induces the three-dimensional magnetic ordering, which is forbidden in the undistorted structure by symmetry. We also revealed a near-linear relation between TN and the tolerance factor and a power-law relation between TN and the K3 distortion amplitude. Following the analysis, a record-high TN (185 K) among hexagonal ferrites was predicted in hexagonal ScFeO3 and experimentally verified in epitaxially stabilized films. These results add to the paradigm of spin-lattice coupling in antiferromagnetic oxides and suggests further tunability of hexagonal ferrites if more lattice distortion can be achieved.
125 - T. Yu , P. Gao , T. Wu 2013
Single crystal synthesis, structure, electric polarization and heat capacity measurements on hexagonal InMnO3 show that this small R ion in the RMnO3 series is ferroelectric (space group P63cm). Structural analysis of this system reveals a high degree of order within the MnO5 polyhedra but significant distortions in the R-O bond distributions compared to the previously studied materials. Point-charge estimates of the electric polarization yield an electrical polarization of approximately 7.8 micro C/cm^2, 26% larger than the well-studied YMnO3 system. This system with enhanced room temperature polarization values may serve as a possible replacement for YMnO3 in device application.
Neutron diffraction studies as a function of temperature on solid solutions of MnSe and MnTe in the Se rich region are presented. Interestingly as Te is doped in MnSe, the structural transformation to NiAs phase diminishes, both in terms of % fraction of compound as well as in terms of transition temperature. In MnTe$_{0.3}$Se$_{0.7}$, the NaCl to NiAs phase transformation occurs at about 40K and although it is present at room temperature in MnTe$_{0.5}$Se$_{0.5}$, its volume fraction is only about 10% of the total volume of sample. The magnetic ordering temperature of the cubic phase decreases with increasing Te content while the hexagonal phase orders at the same temperature as in MnSe. Anomalies in thermal evolution of lattice parameters at magnetic ordering as well as structural transition temperatures indicate presence of magnetostructural coupling in these compounds.
Gen Shirane began studying ferroelectrics while he was still based in Japan in the early 1950s. It was therefore natural that when he arrived at Brookhaven and began specialising in neutron scattering that he would devote much of his energy and expertise studying structural phase transitions. We review the ground breaking experiments that showed the behaviour of antiferroelectrics and ferroelectrics were reasonably described in terms of the soft mode concept of structural phase transitions. This work lead directly to Gen being awarded the Buckley prize and, jointly with John Axe, awarded the Warren prize. We then describe his work on incommensurate phase transitions and in particular how the giant Kohn anomalies are responsible for the structural instabilities in one-dimensional metals. Finally Gen carefully investigated the central peak and the two-length scale phenomena that occur at most if not all transitions. Due to Gens elegant experimental work we know a great deal about both of these effects but in neither case is theory able to explain all of his results
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا