Do you want to publish a course? Click here

Ballistic orbits in Schwarzschild space-time and gravitational waves from EMR binary mergers

130   0   0.0 ( 0 )
 Added by Giuseppe d'Ambrosi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a special class of ballistic geodesics in Schwarzschild space-time, extending to the horizon in the infinite past and future of observer time, which are characterized by the property that they are in 1-1 correspondence, and completely degenerate in energy and angular momentum, with stable circular orbits. We derive analytic expressions for the source terms in the Regge-Wheeler and Zerilli-Moncrief equations for a point-particle moving on such a ballistic orbit, and compute the gravitational waves emitted during the infall in an Extreme Mass Ratio black-hole binary coalescence. In this way a geodesic description for the plunge phase of compact binaries is obtained.



rate research

Read More

We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal component analysis. We train mlgw on about $mathcal{O}(10^3)$ TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios $qin[1,20]$ and aligned dimensionless spins $sin[-0.80,0.95]$. The resulting models are faithful to the training sets at the ${sim}10^{-3}$ level (averaged on the parameter space). The speed up for a single waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency) for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw provides a closed form expression for the waveform and its gradient with respect to the orbital parameters; such an information might be useful for future improvements in GW data analysis. As demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the public data from the first GW transient catalog (GWTC-1). We find broadly consistent results with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms gives systematic larger values of the effective spins with respect to previous analyses with precessing waveforms. Since the generation time does not depend on the length of the signal, our model is particularly suitable for the analysis of the long signals that are expected to be detected by third-generation detectors. Future applications include the analysis of waveform systematics and model selection in parameter estimation.
As current gravitational wave (GW) detectors increase in sensitivity, and particularly as new instruments are being planned, there is the possibility that ground-based GW detectors will observe GWs from highly eccentric neutron star binaries. We present the first detailed study of highly eccentric BNS systems with full (3+1)D numerical relativity simulations using consistent initial conditions, i.e., setups which are in agreement with the Einstein equations and with the equations of general relativistic hydrodynamics in equilibrium. Overall, our simulations cover two different equations of state (EOSs), two different spin configurations, and three to four different initial eccentricities for each pairing of EOS and spin. We extract from the simulated waveforms the frequency of the f-mode oscillations induced during close encounters before the merger of the two stars. The extracted frequency is in good agreement with f-mode oscillations of individual stars for the irrotational cases, which allows an independent measure of the supranuclear equation of state not accessible for binaries on quasi-circular orbits. The energy stored in these f-mode oscillations can be as large as $10^{-3}M_odot sim 10^{51}$ erg, even with a soft EOS. In order to estimate the stored energy, we also examine the effects of mode mixing due to the stars offset from the origin on the f-mode contribution to the GW signal. While in general (eccentric) neutron star mergers produce bright electromagnetic counterparts, we find that the luminosity decreases when the eccentricity becomes too large, due to a decrease of the ejecta mass. Finally, the use of consistent initial configurations also allows us to produce high-quality waveforms for different eccentricities which can be used as a testbed for waveform model development of highly eccentric binary neutron star systems.
Third-generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without breaking the computational bank. We construct reduced order models for $sim 90,mathrm{minute}$ long gravitational-wave signals, covering the observing band ($5-2048,mathrm{Hz}$), speeding up inference by a factor of $sim 1.3times 10^4$ compared to the calculation times without reduced order models. The reduced order models incorporate key physics including the effects of tidal deformability, amplitude modulation due to the Earths rotation, and spin-induced orbital precession. We show how reduced order modeling can accelerate inference on data containing multiple, overlapping gravitational-wave signals, and determine the speedup as a function of the number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.
89 - J.W. van Holten 2016
According to General Relativity gravity is the result of the interaction between matter and space-time geometry. In this interaction space-time geometry itself is dynamical: it can store and transport energy and momentum in the form of gravitational waves. We give an introductory account of this phenomenon and discuss how the observation of gravitational waves may open up a fundamentally new window on the universe.
We continue our study of the binary neutron star parameter space by investigating the effect of the spin orientation on the dynamics, gravitational wave emission, and mass ejection during the binary neutron star coalescence. We simulate seven different configurations using multiple resolutions to allow a reasonable error assessment. Due to the particular choice of the setups, five configurations show precession effects, from which two show a precession (wobbling) of the orbital plane, while three show a bobbing motion, i.e., the orbital angular momentum does not precess, while the orbital plane moves along the orbital angular momentum axis. Considering the ejection of mass, we find that precessing systems can have an anisotropic mass ejection, which could lead to a final remnant kick of $sim 40 rm km/s$ for the studied systems. Furthermore, for the chosen configurations, antialigned spins lead to larger mass ejecta than aligned spins, so that brighter electromagnetic counterparts could be expected for these configurations. Finally, we compare our simulations with the precessing, tidal waveform approximant IMRPhenomPv2_NRTidalv2 and find good agreement between the approximant and our numerical relativity waveforms with phase differences below 1.2 rad accumulated over the last $sim$ 16 gravitational wave cycles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا