Do you want to publish a course? Click here

UKIRT Widefield Infrared Survey for Fe$^+$

171   0   0.0 ( 0 )
 Added by Jae-Joon Lee
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The United Kingdom Infrared Telescope (UKIRT) Widefield Infrared Survey for Fe$^+$ (UWIFE) is a 180 deg$^2$ imaging survey of the first Galactic quadrant (7$^{circ}$ < l < 62$^{circ}$; |b| < 1.5$^{circ}$) using a narrow-band filter centered on the [Fe II] 1.644 {mu}m emission line. The [Fe II] 1.644 {mu}m emission is a good tracer of dense, shock-excited gas, and the survey will probe violent environments around stars: star-forming regions, evolved stars, and supernova remnants, among others. The UWIFE survey is designed to complement the existing UKIRT Widefield Infrared Survey for H2 (UWISH2; Froebrich et al. 2011). The survey will also complement existing broad-band surveys. The observed images have a nominal 5{sigma} detection limit of 18.7 mag for point sources, with the median seeing of 0.83. For extended sources, we estimate surface brightness limit of 8.1 x 10$^{-20}$ W m$^{-2}$ arcsec$^{-2}$ . In this paper, we present the overview and preliminary results of this survey.



rate research

Read More

310 - N. Lodieu 2009
We present the discovery of two brown dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Deep Extragalactic Survey (DXS) Data Release 2. Both objects were selected photometrically from six square degrees in DXS for their blue J-K colour and the lack of optical counterparts in the Sloan Digital Sky Survey (SDSS) Stripe 82. Additional optical photometry provided by the Canada-France-Hawaii Telescope Legacy Survey (CFHT-LS) corroborated the possible substellarity of these candidates. Subsequent methane imaging of UDXS J221611.51+003308.1 and UDXS J221903.10+002418.2, has confirmed them as T7$pm$1 and T6$pm$1 dwarfs at photometric distances of 81 (52-118 pc) and 60 (44-87 pc; 2 sigma confidence level). A similar search in the second data release of the Ultra Deep Survey over a smaller area (0.77 square degree) and shallower depth didnt return any late-T dwarf candidate. The numbers of late-T dwarfs in our study are broadly in line with a declining mass function when considering the current area and depth of the DXS and UDS. These brown dwarfs are the first discovered in the VIMOS 4 field and among the few T dwarfs found in pencil-beam surveys. They are valuable to investigate the scale height of T dwarfs.
115 - Steve Warren 2002
UKIDSS is the next generation near-infrared sky survey. The survey will commence in early 2004, and over 7 years will collect 100 times as many photons as 2MASS. UKIDSS will use the UKIRT Wide Field Camera to survey 7500 square degrees of the northern sky, extending over both high and low Galactic latitudes, in JHK to K=18.5 (over three magnitudes deeper than 2MASS). UKIDSS will be the true near-infrared counterpart to the Sloan survey, and will produce as well a panoramic clear atlas of the Galactic plane. In fact UKIDSS is made up of five surveys and includes two deep extra-Galactic elements, one covering 35 square degrees to K=21, and the other reaching K=23 over 0.77 square degrees. This paper provides the details of the five UKIDSS surveys and describes the main science goals.
The First Data Release (DR1) of the UKIRT Infrared Deep Sky Survey (UKIDSS) took place on 2006 July 21. UKIDSS is a set of five large near-infrared surveys, covering a complementary range of areas, depths, and Galactic latitudes. DR1 is the first large release of survey-quality data from UKIDSS and includes 320 sq degs of multicolour data to (Vega) K=18, complete (depending on the survey) in three to five bands from the set ZYJHK, together with 4 sq degs of deep JK data to an average depth K=21. In addition the release includes a similar quantity of data with incomplete filter coverage. In JHK, in regions of low extinction, the photometric uniformity of the calibration is better than 0.02 mag. in each band. The accuracy of the calibration in ZY remains to be quantified, and the same is true of JHK in regions of high extinction. The median image FWHM across the dataset is 0.82 arcsec. We describe changes since the Early Data Release in the implementation, pipeline and calibration, quality control, and archive procedures. We provide maps of the areas surveyed, and summarise the contents of each of the five surveys in terms of filters, areas, and depths. DR1 marks completion of 7 per cent of the UKIDSS 7-year goals.
The UKIRT Infrared Deep Sky Survey (UKIDSS) is a set of five large near-infrared surveys, covering a complementary range of areas, depths, and Galactic latitudes. The UKIDSS Second Data Release (DR2) includes the First Data Release (DR1), with minor improvements, plus new data for the LAS, GPS, GCS, and DXS, from observations made over 2006 May through July (when the UDS was unobservable). DR2 was staged in two parts. The first part excluded the GPS, and took place on 2007 March 1. The GPS was released on 2007 April 12. DR2 includes 282 sq. degs of multicolour data to (Vega) K=18, complete in the full YJHK set for the LAS, 57 sq. degs in the ZYJHK set for the GCS, and 236 sq. degs in the JHK set for the GPS. DR2 includes nearly 7 sq. degs of deep JK data (DXS, UDS) to an average depth K=21. In addition the release includes a comparable quantity of data where coverage of the filter set for any survey is incomplete. We document changes that have occurred since DR1 to the pipeline, calibration, and archive procedures. The two most noteworthy changes are presentation of the data in a single database (compared to two previously), and provision of additional error flags for detected sources, flagging potentially spurious artifacts, corrupted data and suspected cross-talk sources. We summarise the contents of each of the surveys in terms of filters, areas, and depths.
We present the first discoveries from a survey of $zgtrsim6$ quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg$^2$ of sky down to $z_{rm AB}sim23.0$, and UKIDSS and UHS, which will map the northern sky at $0<DEC<+60^{circ}$, reaching $J_{rm VEGA}sim19.6$ (5-$sigma$). The combination of these datasets allows us to discover quasars at redshift $zgtrsim7$ and to conduct a complete census of the faint quasar population at $zgtrsim6$. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint $zgtrsim6$ quasars and one new $z=6.63$ quasar in our pilot spectroscopic observations. The two new $zsim6$ quasars are at $z=6.07$ and $z=6.17$ with absolute magnitudes at rest-frame wavelength 1450 AA being $M_{1450}=-25.83$ and $M_{1450}=-25.76$, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at $zgtrsim6$. The new $z=6.63$ quasar has an absolute magnitude of $M_{1450}=-25.95$. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS datasets to find $zgtrsim7$ quasars. Extrapolating from previous QLF measurements, we predict that these combined datasets will yield $sim200$ $zsim6$ quasars to $z_{rm AB} < 21.5$, $sim1{,}000$ $zsim6$ quasars to $z_{rm AB}<23$, and $sim 30$ quasars at $z>6.5$ to $J_{rm VEGA}<19.5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا