No Arabic abstract
The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of $300$ kilo-electron volts, which is greater than $0$ by $5$ standard deviations. We also determine the splittings in the $Sigma$, $Xi$, $D$ and $Xi_{cc}$ isospin multiplets, exceeding in some cases the precision of experimental measurements.
Many low-energy, particle-physics experiments seek to reveal new fundamental physics by searching for very rare scattering events on atomic nuclei. The interpretation of their results requires quantifying the non-linear effects of the strong interaction on the spin-independent couplings of this new physics to protons and neutrons. Here we present a fully-controlled, ab-initio calculation of these couplings to the quarks within those constituents of nuclei. We use lattice quantum chromodynamics computations for the four lightest species of quarks and heavy-quark expansions for the remaining two. We determine each of the six quark contributions with an accuracy better than 15%. Our results are especially important for guiding and interpreting experimental searches for our universes dark matter.
The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We assume that the asymptotic behaviour is dominated by Reggeon exchange. This leads to a sum rule that expresses the subtraction function in terms of measurable quantities. The evaluation of this sum rule leads to $m_{QED}^{p-n}=0.58pm 0.16,mbox{MeV}$.
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volumes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)% and 37(5)(4)% respectively in the $overline{MS}$ scheme at $mu = 2$ GeV. A quarter of the trace anomaly gives a 23(1)(1)% contribution to the proton mass based on the sum rule, given 9(2)(1)% contribution from the $u, d,$ and $s$ quark scalar condensates. The $u,d,s$ and glue momentum fractions in the $overline{MS}$ scheme are in good agreement with global analyses at $mu = 2$ GeV.
We present a lattice calculation of the neutron and proton electric dipole moments (EDMs) with $N_f=2+1$ flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the $theta$ vacuum of QCD. In this computation, we use pion masses 0.33 and 0.42 GeV and 2.7 fm$^3$ lattices with Iwasaki gauge action and a 0.17 GeV pion and 4.6 fm$^3$ lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient and high statistics calculation. Chiral behavior of lattice EDMs is discussed in the context of baryon chiral perturbation theory. In addition, we also show numerical evidence on relationship of three- and two-point correlation function with local topological distribution.
We present a calculation of the mass of the 1S0 pseudoscalar anti-b c (Bc) state using a non-perturbative measurement from quenched lattice QCD. We find M_Bc = 6.386(9)(98)(15) GeV where the first error is statistical, the second systematic due to the quark mass ambiguities and quenching and the third the systematic error due to the estimation of mass of the eta_b.