Do you want to publish a course? Click here

Induced polarization of {Lambda}(1116) in kaon electroproduction

204   0   0.0 ( 0 )
 Added by Brian Raue
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We have measured the induced polarization of the ${Lambda}(1116)$ in the reaction $eprightarrow eK^+{Lambda}$, detecting the scattered $e$ and $K^+$ in the final state along with the proton from the decay $Lambdarightarrow ppi^-$.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy $W$ ($1.6leq W leq 2.7$ GeV) and covered the full range of the kaon production angle at an average momentum transfer $Q^2=1.90$ GeV$^2$.In this experiment a 5.50 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. We have mapped out the $W$ and kaon production angle dependencies of the induced polarization and found striking differences from photoproduction data over most of the kinematic range studied. However, we also found that the induced polarization is essentially $Q^2$ independent in our kinematic domain, suggesting that somewhere below the $Q^2$ covered here there must be a strong $Q^2$ dependence. Along with previously published photo- and electroproduction cross sections and polarization observables, these data are needed for the development of models, such as effective field theories, and as input to coupled-channel analyses that can provide evidence of previously unobserved $s$-channel resonances.



rate research

Read More

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. The cross section to low-lying states of Lambda-9Li is concentrated within 3 MeV of the ground state and can be fitted with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. A Lambda separation energy of 8.36 +- 0.08 (stat.) +- 0.08 (syst.) MeV was measured, in agreement with an earlier experiment.
The $^{1}H$($e,e^prime K^+$)$Lambda$ reaction was studied as a function of the Mandelstam variable $-t$ using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Lab. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers $Q^2$ of 1.00, 1.36 and 2.07 GeV$^2$. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen, Guidal, and Laget. The results establish the method, previously used successfully for pion analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Lab experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of $Q^2$ between 5-10 GeV$^2$, which makes data in the few GeV regime particularly interesting. The $Q^2$ dependence at fixed $x$ and $-t$ of the longitudinal cross section we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.
84 - J. J. Kelly 2005
We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q^2=1.0 (GeV/c)^2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.
276 - Patrick Achenbach 2011
An instrument of central importance for the strangeness photo- and electroproduction at the 1.5-GeV electron beam of the MAMI accelerator at the Institut fur Kernphysik in Mainz, Germany, is the newly installed magnetic spectrometer Kaos that is operated by the A1 collaboration in $(e,eK)$ reactions on the proton or light nuclei. Its compact design and its capability to detect negative and positive charged particles simultaneously complements the existing spectrometers. The strangeness program performed with Kaos in 2008-9 is addressing some important issues in the field of elementary kaon photo- and electroproduction reactions. Although recent measurements have been performed at Jefferson Lab, there are still a number of open problems in the interpretation of the data and the description of the elementary process using phenomenological models. With the identification of $Lambda$ and $Sigma^0$ hyperons in the missing mass spectra from kaon production off a liquid hydrogen target it is demonstrated that the extended facility at MAMI is capable to perform strangeness electroproduction spectroscopy at low momentum transfers $Q^2$ < 0.5 (GeV/c)$^2$. The covered kinematics and systematic uncertainties in the cross-section extraction from the data are discussed.
Kaon electroproduction from light nuclei and hydrogen, using 1H, 2H, 3He, 4He, and Carbon targets has been measured at Jefferson Laboratory. The quasifree angular distributions of Lambda and Sigma hyperons were determined at Q^2= 0.35(GeV/c)^2 and W= 1.91GeV. Electroproduction on hydrogen was measured at the same kinematics for reference.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا