Do you want to publish a course? Click here

Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity

197   0   0.0 ( 0 )
 Added by Paritosh Karnatak
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction between the Fermi sea of conduction electrons and a non-adiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac Fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude $approx e^{2}/h$ at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities, and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.



rate research

Read More

The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from the behavior of non-relativistic electrons seen in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have yet to be tested in a laboratory. Graphene, a 2D material in which electrons behave like massless Dirac fermions, provides a unique opportunity to experimentally test such predictions. The response of Dirac fermions to a Coulomb potential in graphene is central to a wide range of electronic phenomena and can serve as a sensitive probe of graphenes intrinsic dielectric constant, the primary factor determining the strength of electron-electron interactions in this material. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunneling microscopy and spectroscopy were used to fabricate tunable charge impurities on graphene and to measure how they are screened by Dirac fermions for a Q = +1|e| impurity charge state. Electron-like and hole-like Dirac fermions were observed to respond very differently to tunable Coulomb potentials. Comparison of this electron-hole asymmetry to theoretical simulations has allowed us to test basic predictions for the behavior of Dirac fermions near a Coulomb potential and to extract the intrinsic dielectric constant of graphene: {epsilon}_g= 3.0 pm 1.0. This small value of {epsilon}_g indicates that microscopic electron-electron interactions can contribute significantly to graphene properties.
253 - S. C. Kim , S. -R. Eric Yang , 2014
We have investigated a new feature of impurity cyclotron resonances common to various localized potentials of graphene. A localized potential can interact with a magnetic field in an unexpected way in graphene. It can lead to formation of anomalous boundstates that have a sharp peak with a width $R$ in the probability density inside the potential and a broad peak of size magnetic length $ell$ outside the potential. We investigate optical matrix elements of anomalous states, and find that they are unusually small and depend sensitively on magnetic field. The effect of many-body interactions on their optical conductivity is investigated using a self-consistent time-dependent Hartree-Fock approach (TDHFA). For a completely filled Landau level we find that an excited electron-hole pair, originating from the optical transition between two anomalous impurity states, is nearly uncorrelated with other electron-hole pairs, although it displays a substantial exchange self-energy effects. This absence of correlation is a consequence of a small vertex correction in comparison to the difference between renormalized transition energies computed within the one electron-hole pair approximation. However, an excited electron-hole pair originating from the optical transition between a normal and an anomalous impurity states can be substantially correlated with other electron-hole states with a significant optical strength.
We report on the observation of edge electric currents excited in bi-layer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientation of the THz electric field polarization plane. Additionally, applying a small magnetic field normal to the graphene plane leads to a phase shift in the polarization dependence. Increasing the magnetic field strength, the current starts to exhibit 1/B-magnetooscillations with a period consistent with that of the Shubnikov-de-Haas effect and amplitude by an order of magnitude larger as compared to the current at zero magnetic field measured under the same conditions. The microscopic theory developed shows that the current is formed in the edges vicinity limited by the mean-free path of carriers and the screening length of the high-frequency electric field. The current originates from the alignment of the free carrier momenta and dynamic accumulation of charge at the edges, where the P-symmetry is naturally broken. The observed magnetooscillations of the photocurrent are attributed to the formation of Landau levels.
We observe that the illumination of unbiased graphene in the quantum Hall regime with polarized terahertz laser radiation results in a direct edge current. This photocurrent is caused by an imbalance of persistent edge currents, which are driven out of thermal equilibrium by indirect transitions within the chiral edge channel. The direction of the edge photocurrent is determined by the polarity of the external magnetic field, while its magnitude depends on the radiation polarization. The microscopic theory developed in this paper describes well the experimental data.
We report the observation of an intense anomalous peak at 1608 cm$^{-1}$ in the Raman spectrum of graphene associated to the presence of chromium nanoparticles in contact with graphene. Bombardment with an electron beam demonstrates that this peak is distinct from the well studied D$$ peak appearing as defects are created in graphene; the new peak is found non dispersive. We argue that the bonding of chromium atoms with carbon atoms softens the out-of-plane optical (ZO) phonon mode, in such a way that the frequency of its overtone decreases to $2omega_{rm ZO}simomega_{rm G}$, where $omega_{rm G}$=1585~cm$^{-1}$ is the frequency of the Raman-active E$_{rm 2g}$ mode. Thus, the observed new peak is attributed to the 2ZO mode which becomes Raman-active following a mechanism known as Fermi resonance. First-principles calculations on vibrational and anharmonic properties of the graphene/Cr interface support this scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا