Do you want to publish a course? Click here

Probing bath-induced entanglement in a qubit pair by measuring photon correlations

99   0   0.0 ( 0 )
 Added by Brendon Lovett
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-assembled quantum dots are ideal structures in which to test theories of open quantum systems: Confined exciton states can be coherently manipulated and their decoherence properties are dominated by interactions with acoustic phonons. We here describe the interaction of a pair of un-coupled, driven, quantum dot excitons with a common phonon environment, and find that this coupling effectively generates two kinds of interaction between the two quantum dots: An elastic coupling mediated by virtual phonons and an inelastic coupling mediated by real phonons. We show that both of these interactions produce steady state entanglement between the two quantum dot excitons. We also show that photon correlations in the emission of the quantum dots can provide a signature of the common environment. Experiments to demonstrate our predictions are feasible with the state-of-the-art technology and would provide valuable insight into quantum dot carrier-phonon dynamics.



rate research

Read More

157 - J. P. Pekola , S. Suomela , 2016
We discuss a qubit weakly coupled to a finite-size heat bath (calorimeter) from the point of view of quantum thermodynamics. The energy deposited to this environment together with the state of the qubit provides a basis to analyze the heat and work statistics of this closed combined system. We present results on two representative models, where the bath is composed of two-level systems or harmonic oscillators, respectively. Finally, we derive results for an open quantum system composed of the above qubit plus finite-size bath, but now the latter is coupled to a practically infinite bath of the same nature of oscillators or two-level systems.
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of $4 mu s$.
We report on simulations of the degree of polarization entanglement of photon pairs simultaneously emitted from a quantum dot-cavity system that demand revisiting the role of phonons. Since coherence is a fundamental precondition for entanglement and phonons are known to be a major source of decoherence, it seems unavoidable that phonons can only degrade entanglement. In contrast, we demonstrate that phonons can cause a degree of entanglement that even surpasses the corresponding value for the phonon-free case. In particular, we consider the situation of comparatively small biexciton binding energies and either finite exciton or cavity mode splitting. In both cases, combinations of the splitting and the dot-cavity coupling strength are found where the entanglement exhibits a nonmonotonic temperature dependence which enables entanglement above the phonon-free level in a finite parameter range. This unusual behavior can be explained by phonon-induced renormalizations of the dot-cavity coupling $g$ in combination with a nonmonotonic dependence of the entanglement on $g$ that is present already without phonons.
The quantum coherence and gate fidelity of electron spin qubits in semiconductors is often limited by noise arising from coupling to a bath of nuclear spins. Isotopic enrichment of spin-zero nuclei such as $^{28}$Si has led to spectacular improvements of the dephasing time $T_2^*$ which, surprisingly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom $^{31}$P qubit in enriched $^{28}$Si, we show that the abnormally long $T_2^*$ is due to the controllable freezing of the dynamics of the residual $^{29}$Si nuclei close to the donor. Our conclusions are supported by a nearly parameter-free modeling of the $^{29}$Si nuclear spin dynamics, which reveals the degree of back-action provided by the electron spin as it interacts with the nuclear bath. This study clarifies the limits of ergodic assumptions in analyzing many-body spin-problems under conditions of strong, frequent measurement, and provides novel strategies for maximizing coherence and gate fidelity of spin qubits in semiconductors.
The use of artificial atoms as an active lasing medium opens a way to construct novel sources of nonclassical radiation. An example is the creation of photon-number squeezed light. Here we present a design of a laser consisting of multiple Cooper-pair transistors coupled to a microwave resonator. Over a broad range of experimentally realizable parameters, this laser creates photon-number squeezed microwave radiation, characterized by a Fano factor $F ll 1$, at a very high resonator photon number. We investigate the impact of gate-charge disorder in a Cooper-pair transistor and show that the system can create squeezed strong microwave fields even in the presence of maximum disorder.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا