Do you want to publish a course? Click here

Dynamical Processes in Globular Clusters

118   0   0.0 ( 0 )
 Added by Giacomo Beccari
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.



rate research

Read More

Lithium is created during the Big Bang nucleosynthesis and it is destroyed in stellar interiors at relatively low temperatures. However, it should be preserved in the stellar envelopes of unevolved stars and progressively diluted during mixing processes. In particular, after the first dredge-up along the RGB, lithium should be completely destroyed, but this is not what we observe today in globular clusters. This element allows to test stellar evolutionary models, as well as different types of polluters for second population stars in the multiple population scenarios. Due to the difficulty in the measurement of the small available lithium line, few GCs have been studied in details so far. Literature results are not homogeneous for what concerns type of stars, sample sizes, and chemical analysis methods. The Gaia-ESO survey allows us to study the largest sample of GCs stars (about 2000, both dwarfs and giants) for which the lithium has been analysed homogeneously.
172 - Christian Knigge 2011
Every massive globular cluster (GC) is expected to harbour a significant population of cataclysmic variables (CVs). In this review, I first explain why GC CVs matter astrophysically, how many and what types are theoretically predicted to exist and what observational tools we can use to discover, confirm and study them. I then take a look at how theoretical predictions and observed samples actually stack up to date. In the process, I also reconsider the evidence for two widely held ideas about CVs in GCs: (i) that there must be many fewer dwarf novae than expected; (ii) that the incidence of magnetic CVs is much higher in GCs than in the Galactic field.
Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.
89 - Evan N. Kirby 2016
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 +/- 0.1)% for the RGB, (1.6 +/- 1.1)% for the AGB, and (0.3 +/- 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.
We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t_DF) develops a non-monotonic radial-dependence that could explain the bimodality of the Blue Straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t_DF are expected to be dependent on radius. We find that, in spite of the presence of different masses, t_DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This because the radial dependence of t_DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the BSS population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimates of t_DF within the half-mass radius.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا