Do you want to publish a course? Click here

Bergman and Caratheodory metrics of the Kohn-Nirenberg domains

228   0   0.0 ( 0 )
 Added by Kang-Tae Kim
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The Kohn-Nireberg domains are unbounded domains in the complex Euclidean space of dimension 2 upon which many outstanding questions are yet to be explored. The primary aim of this article is to demonstrate that the Bergman and Caratheodory metrics of any Kohn-Nirenberg domains are positive and complete.



rate research

Read More

It is proved that for any domain in $mathbb C^n$ the Caratheodory--Eisenman volume is comparable with the volume of the indicatrix of the Caratheodory metric up to small/large constants depending only on $n.$ Then the multidimensional Suita conjecture theorem of Blocki and Zwonek implies a comparable relationship between these volumes and the Bergman kernel.
This paper provides a precise asymptotic expansion for the Bergman kernel on the non-smooth worm domains of Christer Kiselman in complex 2-space. Applications are given to the failure of Condition R, to deviant boundary behavior of the kernel, and to L^p mapping properties of the kernel.
We obtain sharp ranges of $L^p$-boundedness for domains in a wide class of Reinhardt domains representable as sub-level sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating $L^p$-boundedness on a domain and its quotient by a finite group. The range of $p$ for which the Bergman projection is $L^p$-bounded on our class of Reinhardt domains is found to shrink as the complexity of the domain increases.
It is shown that even a weak multidimensional Suita conjecture fails for any bounded non-pseudoconvex domain with $mathcal C^1$ boundary: the product of the Bergman kernel by the volume of the indicatrix of the Azukawa metric is not bounded below. This is obtained by finding a direction along which the Sibony metric tends to infinity as the base point tends to the boundary. The analogous statement fails for a Lipschitz boundary. For a general $mathcal C^1$ boundary, we give estimates for the Sibony metric in terms of some directional distance functions. For bounded pseudoconvex domains, the Blocki-Zwonek Suita-type theorem implies growth to infinity of the Bergman kernel; the fact that the Bergman kernel grows as the square of the reciprocal of the distance to the boundary, proved by S. Fu in the $mathcal C^2$ case, is extended to bounded pseudoconvex domains with Lipschitz boundaries.
We obtain local estimates, also called propagation of smallness or Remez-type inequalities, for analytic functions in several variables. Using Carleman estimates, we obtain a three sphere-type inequality, where the outer two spheres can be any sets satisfying a boundary separation property, and the inner sphere can be any set of positive Lebesgue measure. We apply this local result to characterize the dominating sets for Bergman spaces on strongly pseudoconvex domains in terms of a density condition or a testing condition on the reproducing kernels. Our methods also yield a sufficient condition for arbitrary domains and lower-dimensional sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا