Do you want to publish a course? Click here

Optically selected fossil groups; X-ray observations and galaxy properties

445   0   0.0 ( 0 )
 Added by Habib Khosroshahi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the X-ray and optical observations of galaxy groups selected from the 2dfGRS group catalog, to explore the possibility that galaxy groups hosting a giant elliptical galaxy and a large optical luminosity gap present between the two brightest group galaxies, can be associated with an extended X-ray emission, similar to that observed in fossil galaxy groups. The X-ray observations of 4 galaxy groups were carried out with Chandra telescope with 10-20 ksec exposure time. Combining the X-ray and the optical observations we find evidences for the presence of a diffuse extended X-ray emission beyond the optical size of the brightest group galaxy. Taking both the X-ray and the optical criteria, one of the groups is identified as a fossil group and one is ruled out because of the contamination in the earlier optical selection. For the two remaining systems, the X-ay luminosity threshold is close to the convention know for fossil groups. In all cases the X-ray luminosity is below the expected value from the X-ray selected fossils for a given optical luminosity of the group. A rough estimation for the comoving number density of fossil groups is obtained and found to be in broad agreement with the estimations from observations of X-ray selected fossils and predictions of cosmological simulations.



rate research

Read More

202 - Sagnick Mukherjee 2018
We use data from the All Wavelength Extended Groth Strip International Survey to construct stacked X-ray maps of optically bright active galaxies (AGN) and an associated control sample of galaxies at high redshift (z less than 0.6). From our analysis of the surface brightness profiles obtained from these X-ray maps, we find evidence of feedback from the active nuclei. We find that excluding galaxies and AGN, residing in group environments, from our samples enhances the significance of our detection. Our results support the tentative findings of Chatterjee et al. who use X-ray selected AGN for their analysis. We discuss the implications of these results in the context of quantifying AGN feedback and show that the current method can be used to extract X-ray source population in high redshift galaxies.
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich clusters, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations agrees well in trend and evolution with the observational results obtained from two data samples characterised by a wide range of masses and a large redshift coverage. We find that the iron abundance in the cluster core ($r<0.1R_{500}$) does not correlate with the temperature nor presents a significant evolution. The scale invariance is confirmed when the metallicity is related directly to the total mass. The slope of the best-fitting relations is shallow ($betasim-0.1$) in the innermost regions ($r<0.5R_{500}$) and consistent with zero outside. We investigate the impact of the AGN feedback and find that it plays a key role in producing a constant value of the outskirts metallicity from groups to clusters. This finding additionally supports the picture of early enrichment.
We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Bootes survey. Our final sample comprises 32 systems at textbf{$z<1.75$}, with 14 below $z = 0.35$. For these 14 systems we estimate velocity dispersions ($sigma_{gr}$) and perform a virial analysis to obtain the radii ($R_{200}$ and $R_{500}$) and total masses ($M_{200}$ and $M_{500}$) for groups with at least five galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity ($L_X$). We examine the performance of the group properties $sigma_{gr}$, $L_{opt}$ and $L_X$, as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Bootes sample and comparing these with samples from the literature, we find a break in the $L_X$-$M_{500}$ relation at approximately $M_{500} = 5times10^{13}$ M$_odot$ (for $M_{500} > 5times10^{13}$ M$_odot$, $M_{500} propto L_X^{0.61pm0.02}$, while for $M_{500} leq 5times10^{13}$ M$_odot$, $M_{500} propto L_X^{0.44pm0.05}$). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions and projection effects which reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify $sim$1800 groups ($L_X = 10^{41}-10^{43}$ ergs s$^{-1}$) within a distance of 200 Mpc. Since groups lie in large scale filaments, this group sample will map the large scale structure of the local universe.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we chose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
We report the discovery of 12 new fossil groups of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These fossil groups (FGs), selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium (IGM) with a central AGN, or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central BCG, although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample, a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and {Omega}_m, these biased mass functions may in turn bias these results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا