Do you want to publish a course? Click here

The validity of quasi steady-state approximations in discrete stochastic simulations

322   0   0.0 ( 0 )
 Added by Jae Kyoung Kim
 Publication date 2014
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by non-elementary reaction rate functions (e.g. Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the non-elementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of non-elementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the non-elementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in non-elementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the pre-factor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when non-elementary reaction functions are obtained using the total QSSA. Our work provides a novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.



rate research

Read More

Zero-order ultrasensitivity (ZOU) is a long known and interesting phenomenon in enzyme networks. Here, a substrate is reversibly modified by two antagonistic enzymes (a push-pull system) and the fraction in modified state undergoes a sharp switching from near-zero to near-unity at a critical value of the ratio of the enzyme concentrations, under saturation conditions. ZOU and its extensions have been studied for several decades now, ever since the seminal paper of Goldbeter and Koshland (1981); however, a complete probabilistic treatment, important for the study of fluctuations in finite populations, is still lacking. In this paper, we study ZOU using a modular approach, akin to the total quasi-steady state approximation (tQSSA). This approach leads to a set of Fokker-Planck (drift-diffusion) equations for the probability distributions of the intermediate enzyme-bound complexes, as well as the modified/unmodified fractions of substrate molecules. We obtain explicit expressions for various average fractions and their fluctuations in the linear noise approximation (LNA). The emergence of a critical point for the switching transition is rigorously established. New analytical results are derived for the average and variance of the fractional substrate concentration in various chemical states in the near-critical regime. For the total fraction in the modified state, the variance is shown to be a maximum near the critical point and decays algebraically away from it, similar to a second-order phase transition. The new analytical results are compared with existing ones as well as detailed numerical simulations using a Gillespie algorithm.
The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction of the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis--Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation.
The estimation of the kinetic parameters requires the careful design of experiments under a constrained set of conditions. Many estimates reported in the literature incorporate protocols that leverage simplified mathematical models known as quasi-steady-state reductions. Such reductions often - but not always - emerge as the result of a singular perturbation scenario. However, the utilization of the singular perturbation reduction method requires knowledge of a dimensionless parameter, $varepsilon$, that is proportional to the ratio of the reactions fast and slow timescales. Using techniques from differential equations, Fenichel theory, and center manifold theory, we derive the appropriate $varepsilon$ whose magnitude regulates the validity of the quasi-steady-state reduction employed in the reported experimental procedures for intermolecular autocatalytic zymogen activation reaction. Although the model equations are two-dimensional, the fast/slow dynamics are rich. The phase plane exhibits a dynamic transcritical bifurcation point in a particular singular limit. The existence of such a bifurcation is relevant, because the critical manifold losses normal hyperbolicity and classical Fenichel theory is inapplicable. Furthermore, we show that in some cases chemical reversibility can be interpreted dynamically as an imperfection, since the presence of reversibility can destroy the bifurcation structure present in the singular limit. We show that the reduction method by which QSS reductions are justified can depend on the path taken in parameter space. Specifically, we show that the standard quasi-steady-state reduction for this reaction is justifiable by center manifold theory in one limit, and via Fenichel theory in a different limit.
The hyperbolic dependence of catalytic rate on substrate concentration is a classical result in enzyme kinetics, quantified by the celebrated Michaelis-Menten equation. The ubiquity of this relation in diverse chemical and biological contexts has recently been rationalized by a graph-theoretic analysis of deterministic reaction networks. Experiments, however, have revealed that molecular noise - intrinsic stochasticity at the molecular scale - leads to significant deviations from classical results and to unexpected effects like molecular memory, i.e., the breakdown of statistical independence between turnover events. Here we show, through a new method of analysis, that memory and non-hyperbolicity have a common source in an initial, and observably long, transient peculiar to stochastic reaction networks of multiple enzymes. Networks of single enzymes do not admit such transients. The transient yields, asymptotically, to a steady-state in which memory vanishes and hyperbolicity is recovered. We propose new statistical measures, defined in terms of turnover times, to distinguish between the transient and steady states and apply these to experimental data from a landmark experiment that first observed molecular memory in a single enzyme with multiple binding sites. Our study shows that catalysis at the molecular level with more than one enzyme always contains a non-classical regime and provides insight on how the classical limit is attained.
234 - Eduardo D. Sontag 2007
This note discusses a theoretical issue regarding the application of the Modular Response Analysis method to quasi-steady state (rather than steady-state) data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا