Do you want to publish a course? Click here

Precise determination of fundamental parameters of six exoplanet host stars and their planets

139   0   0.0 ( 0 )
 Added by Kang Liu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to determinate the fundamental parameters of six exoplanet host (EH) stars and their planets. While techniques for detecting exoplanets yield properties of the planet only as a function of the properties of the host star, hence, we must accurately determine parameters of EH stars at first. For this reason, we constructed a grid of stellar models including diffusion and rotation-induced extra-mixing with given ranges of input parameters (i.e. mass, metallicity, and initial rotation rate). In addition to the commonly used observational constraints such as the effective temperature T_{eff}, luminosity L and metallicity [Fe/H], we added two observational constraints, the lithium abundance log N (Li) and the rotational period P_{rot}. These two additional observed parameters can make further constrains on the model due to their correlations with mass, age and other stellar properties. Hence, our estimations of fundamental parameters for these EH stars and their planets are with higher precision than previous works. Therefore, the combination of rotational period and lithium help us to obtain more accurate parameters for stars, leading to an improvement of the knowledge of the physical state about the EH stars and their planets.



rate research

Read More

We present a study of 33 {it Kepler} planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is flexible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismic parameters, and derive robust fundamental properties for these targets. Applying this scheme to grids of evolutionary models yields stellar properties with median statistical uncertainties of 1.2% (radius), 1.7% (density), 3.3% (mass), 4.4% (distance), and 14% (age), making this the exoplanet host-star sample with the most precise and uniformly determined fundamental parameters to date. We assess the systematics from changes in the solar abundances and mixing-length parameter, showing that they are smaller than the statistical errors. We also determine the stellar properties with three other fitting algorithms and explore the systematics arising from using different evolution and pulsation codes, resulting in 1% in density and radius, and 2% and 7% in mass and age, respectively. We confirm previous findings of the initial helium abundance being a source of systematics comparable to our statistical uncertainties, and discuss future prospects for constraining this parameter by combining asteroseismology and data from space missions. Finally we compare our derived properties with those obtained using the global average asteroseismic observables along with effective temperature and metallicity, finding an excellent level of agreement. Owing to selection effects, our results show that the majority of the high signal-to-noise ratio asteroseismic {it Kepler} host stars are older than the Sun.
158 - Kaspar von Braun 2017
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
133 - K. Belkacem 2012
Seismology of stars that exhibit solar-like oscillations develops a growing interest with the wealth of observational results obtained with the CoRoT and Kepler space-borne missions. In this framework, relations between asteroseismic quantities and stellar parameters provide a unique opportunity to derive model-independent determinations of stellar parameters (e.g., masses and radii) for a large sample of stars. I review those scaling relations with particular emphasis on the underlying physical processes governing those relations, as well as their uncertainties.
We used the Navy Precision Optical Interferometer to measure the limb-darkened angular diameter of the exoplanet host star kappa CrB and obtained a value of 1.543 +/- 0.009 mas. We calculated its physical radius (5.06 +/- 0.04 R_Sun) and used photometric measurements from the literature with our diameter to determine kappa CrBs effective temperature (4788 +/- 17 K) and luminosity (12.13 +/- 0.09 L_Sun). We then placed the star on an H-R diagram to ascertain the stars age (3.42 +0.32/-0.25 Gyr) and mass (1.47 +/- 0.04 M_Sun) using a metallicity of [Fe/H] = +0.15. With this mass, we calculated the systems mass function with the orbital elements from a variety of sources, which produced a range of planetary masses: m_p sin i = 1.61 to 1.88 M_Jup. We also updated the extent of the habitable zone for the system using our new temperature.
We measured the angular diameter of the exoplanet host star iota Dra with Georgia State Universitys Center for High Angular Resolution Astronomy (CHARA) Array interferometer, and, using the stars parallax and photometry from the literature, calculated its physical radius and effective temperature. We then combined our results with stellar oscillation frequencies from Zechmeister et al. (2008) and orbital elements from Kane et al. (2010) to determine the masses for the star and exoplanet. Our value for the central stars mass is 1.82 +/- 0.23 M_Sun, which means the exoplanets minimum mass is 12.6 +/- 1.1 M_Jupiter. Using our new effective temperature, we recalculated the habitable zone for the system, though it is well outside the star-planet separation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا