Do you want to publish a course? Click here

Graphene nanoelectromechanical resonators for detection of modulated terahertz radiation

335   0   0.0 ( 0 )
 Added by Dmitry Svintsov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and analyze the detector of modulated terahertz (THz) radiation based on the graphene field-effect transistor with mechanically floating gate made of graphene as well. The THz component of incoming radiation induces resonant excitation of plasma oscillations in graphene layers (GLs). The rectified component of the ponderomotive force between GLs invokes resonant mechanical swinging of top GL, resulting in the drain current oscillations. To estimate the device responsivity, we solve the hydrodynamic equations for the electrons and holes in graphene governing the plasma-wave response, and the equation describing the graphene membrane oscillations. The combined plasma-mechanical resonance raises the current amplitude by up to four orders of magnitude. The use of graphene as a material for the elastic gate and conductive channel allows the voltage tuning of both resonant frequencies in a wide range.



rate research

Read More

The structural flexibility of low dimensional nanomaterials offers unique opportunities for studying the impact of strain on their physical properties and for developing innovative devices utilizing strain engineering. A key towards such goals is a device platform which allows the independent tuning and reliable calibration of the strain. Here we report the fabrication and characterization of graphene nanoelectromechanical resonators(GNEMRs) on flexible substrates. Combining substrate bending and electrostatic gating, we achieve the independent tuning of the strain and sagging in graphene and explore the nonlinear dynamics over a wide parameter space. Analytical and numerical studies of a continuum mechanics model, including the competing higher order nonlinear terms, reveal a comprehensive nonlinear dynamics phase diagram, which quantitatively explains the complex behaviors of GNEMRs.
We study frequency dependent noise of a suspended carbon nanotube quantum dot nanoelectromechanical resonator induced by electron-vibration coupling. By using rigorous Keldysh diagrammatic technique, we build a formal framework to connect the vibration properties and the electrical measurement. We find that the noise power spectrum has a narrow resonant peak at the frequency of vibrational modes. This fine structure feature disappears due to a coherent cancellation effect when tuning tunneling barriers to a symmetric point. We note that measuring the electrical current noise spectra provides an alternative and ultra-sensitive detection method for determining the damping and dephasing of the quantum vibration modes.
Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures and strong magnetic fields) and promise a viable route for various photonic applications.
159 - J. Karch , C. Drexler , P. Olbrich 2011
We observe photocurrents induced in single layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left- to right-handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.
We report on experimental demonstration of a new type of nanoelectromechanical resonators based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200nm down to ~20nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting promises for moveable and vibratory devices, and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا