Do you want to publish a course? Click here

Ultra-Compact Dwarfs around NGC 3268

435   0   0.0 ( 0 )
 Added by Juan Pablo Caso
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present radial velocities (from Gemini/GMOS) of the second sample of ultra-compact dwarfs (UCDs) and bright globular clusters (GCs) in the Antlia cluster. Twenty-three objects are located around the giant elliptical NGC 3268, and one is close to the fainter lenticular NGC 3273. Together with previously found UCDs around NGC 3258 a total of 35 UCDs and bright GCs has been now identified in the Antlia cluster. Their colours and magnitudes are compared with those of the nuclei of dE,N galaxies already confirmed as Antlia members. For a subsample that lie on ACS images and are brighter than M_V = -9 mag, the effective radii (R_eff) have been measured, the maximum radius being approximately 10 pc. In addition to the radial velocity sample, we find 10 objects in the magnitude range corresponding to GCs but with 10 < R_eff < 17 pc, resembling the so-called `extended clusters. By number and magnitude, the new UCDs fit to the GC luminosity function, supporting their interpretation as bright GCs. Additionally, we use a tracer mass estimator to calculate the mass enclosed up to ~47 kpc from NGC 3268, which results in 2.7 x 10^12 M_o.



rate research

Read More

We present the first compact stellar systems with luminosities in the range of ultra-compact dwarfs (UCDs), discovered in the Antlia galaxy cluster (-10.5 < M_V < -11.6). The magnitude limit between UCDs and globular clusters (CGs) is discussed. By means of imaging from VLT (FORS1), CTIO (MOSAIC), and the HST (ACS) archive, eleven UCDs/bright GCs are selected on the basis of photometry and confirmed as Antlia members through radial velocities measured on new GEMINI (GMOS-S) spectra. In addition, nine UCD candidates are identified taking into account properties derived from their surface brightness profiles. All of them, members and candidates, are located in the proximity of NGC,3258, one of the two brightest elliptical galaxies in the cluster core. Antlia UCDs in this sample present absolute magnitudes fainter than M_V ~ -11.6 mag and most of them have colours within the blue GC range, falling only two within the red GC range. Effective radii measured for the ones lying on the ACS field are in the range R_eff = 3 - 11 pc and are similar to equivalent objects in other clusters, obtained from the literature. The UCD sample shares the same behaviour on the size-luminosity plane: a linear relation between R_eff and M_V is present for UCDs brighter than M_V ~ -10.5 - -11 mag while no trend is detected for fainter ones, that have an approximately constant R_eff. The projected spatial distribution of UCDs, GCs and X-ray emission points to an ongoing merger between two Antlia groups, dominated by NGC 3258 and NGC 3268. Nuclei of dwarf elliptical galaxies and blue UCDs share the same locus on the colour-magnitude diagram, supporting the hypothesis that some blue UCDs may be remnants of stripped nucleated dwarfs.
We have undertaken a spectroscopic search for ultra compact dwarf galaxies (UCDs) in the dense core of the dynamically evolved, massive Coma cluster as part of the HST/ACS Coma Cluster Treasury Survey. UCD candidates were initially chosen based on color, magnitude, degree of resolution within the ACS images, and the known properties of Fornax and Virgo UCDs. Follow-up spectroscopy with Keck/LRIS confirmed 27 candidates as members of the Coma Cluster, a success rate > 60% for targeted objects brighter than M_R = -12. Another 14 candidates may also prove to be Coma members, but low signal-to-noise spectra prevent definitive conclusions. An investigation of the properties and distribution of the Coma UCDs finds these objects to be very similar to UCDs discovered in other environments. The Coma UCDs tend to be clustered around giant galaxies in the cluster core and have colors/metallicity that correlate with the host galaxy. With properties and a distribution similar to that of the Coma cluster globular cluster population, we find strong support for a star cluster origin for the majority of the Coma UCDs. However, a few UCDs appear to have stellar population or structural properties which differentiate them from the old star cluster populations found in the Coma cluster, perhaps indicating that UCDs may form through multiple formation channels.
We present the results of a Keck/DEIMOS survey of Ultra Compact Dwarfs (UCDs) in the Perseus Cluster core. We confirm cluster membership for 14 UCDs, with radial velocities ~5300 km s$^{-1}$. Two of these confirmed Perseus UCDs have extremely blue colours ($B-R < 0.6$ mag), reside in star forming filaments surrounding NGC 1275, and have likely formed as massive star clusters in the last ~100 Myr. We also measure a central velocity dispersion of a third, UCD13 ($sigma_0 = 38 pm 8$ km s$^{-1}$), the most extended UCD in our sample. We determine it to have radius $R_{e} = 85 pm 1.1$ pc, a dynamical mass of ($2.3 pm 0.8)times10^{8}$ M$_{odot}$, and a metallicity [Z/H]$= -0.52^{+0.33}_{-0.29}$ dex. UCD13 and the clusters central galaxy, NGC 1275, have a projected separation of 30 kpc and a radial velocity difference of ~20 km s$^{-1}$. Based on its size, red colour, internal velocity dispersion, dynamical mass, metallicity and proximity to NGC 1275, we argue that UCD13 is likely the remnant nucleus of a tidally stripped dE, with this progenitor dE having $M_{B} approx -16$ mag and mass $sim10^{9}$ M$_{odot}$.
We have found the atomic gas (HI) reservoirs of the blue ultra diffuse galaxy (UDG) candidates identified by Roman and Trujillo in images near Hickson Compact Groups (HCGs). We confirm that all of the objects are indeed UDGs with effective radii R_e > 1.5 kpc. Three of them are likely to be gravitationally bound to the HCG near which they project, one is plausibly gravitationally bound to the nearest HCG, and one is in the background. We measure HI masses and velocity widths for each object directly from the spectra, and use the widths together with the UDG effective radii to estimate dynamical masses and halo spin parameters. The location of the blue UDGs in the HI mass - stellar mass plane is consistent with that of the broader gas-rich galaxy population, and both their HI masses and gas richnesses are correlated with their effective radii. The blue UDGs appear to be low-mass objects with high-spin halos, although their properties are not as extreme as those of the faintest diffuse objects found in HI searches. The data presented here highlight the potential of single-dish radio observations for measuring the physical properties of blue diffuse objects detected in the optical.
Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff <= 100 pc and luminosities in the range -13.5 < MV < -11 mag. Although their origin is still subject of debate, the most popular scenarios suggest that they are massive star clusters or the nuclei of tidally stripped dwarf galaxies. Aims. NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods. In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g~20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results. The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+/-1.4 Gyr and [Z/H] = -0.79 +/- 0.04 dex, respectively, as well as [alpha/Fe] = 0.30 +/- 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions. Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV ~ -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا