Do you want to publish a course? Click here

Isotope Shifts in Beryllium-, Boron-, Carbon-, and Nitrogen-like Ions from Relativistic Configuration Interaction Calculations

495   0   0.0 ( 0 )
 Added by Michel Godefroid R.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wave functions that account for valence, core-valence and core-core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.



rate research

Read More

Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fock-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.
Energies and Auger widths of the $LL$ resonances in He-like ions from boron to argon are evaluated by means of a complex scaled configuration-interaction approach within the framework of the Dirac-Coulomb-Breit Hamiltonian. The nuclear recoil and QED corrections are also taken into account. The obtained results are compared with other calculations based on the complex scaling method as well as with the related results evaluated using the stabilization and basis balancing methods.
Relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations with configuration interaction (CI) are carried out for the $^{1}S_{0}$ and $^{3}P_{0,1}^o$ states in neutral ytterbium by use of the available GRASP2018 package. From the resultant atomic state functions and the RIS4 extension, we evaluate the mass and field shift parameters for the $^{1}S_{0}-,^{3}P_{0}^o$ (clock) and $^{1}S_{0}-,^{3}P_{1}^o$ (intercombination) lines. We present improved estimates of the nuclear charge parameters, $lambda^{A,A}$, and differences in mean-square charge radii, $deltalangle r^2rangle^{A,A}$, and examine the second-order hyperfine interaction for the $^{3}P_{0,1}^o$ states. Isotope shifts for the clock transition have been estimated by three largely independent means from which we predict the unknown clock line frequencies in bosonic Yb isotopes. Knowledge of these line frequencies has implications for King plot nonlinearity tests and the search for beyond Standard-Model signatures.
We present a precise calculation of the Lamb shift $(2P_{1/2}-2S_{1/2})$ in muonic ions $(mu ^6_3Li)^{2+},~(mu ^7_3Li)^{2+}$, $(mu ^9_4Be)^{3+},~(mu ^{10}_4Be)^{3+}$, $(mu ^{10}_5B)^{4+},~(mu ^{11}_5B)^{4+}$. The contributions of orders $alpha^3divalpha^6$ to the vacuum polarization, nuclear structure and recoil, relativistic effects are taken into account. Our numerical results are consistent with previous calculations and improve them due to account of new corrections. The obtained results can be used for the comparison with future experimental data, and extraction more accurate values of nuclear charge radii.
Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions is significantly improved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا