Do you want to publish a course? Click here

Analysis of the phase transition in the $2D$ Ising ferromagnet using a Lempel-Ziv string parsing scheme and black-box data-compression utilities

150   0   0.0 ( 0 )
 Added by Oliver Melchert
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we consider information-theoretical observables to analyze short symbolic sequences, comprising time-series that represent the orientation of a single spin in a $2D$ Ising ferromagnet on a square lattice of size $L^2=128^2$, for different system temperatures $T$. The latter were chosen from an interval enclosing the critical point $T_{rm c}$ of the model. At small temperatures the sequences are thus very regular, at high temperatures they are maximally random. In the vicinity of the critical point, nontrivial, long-range correlations appear. Here, we implement estimators for the entropy rate, excess entropy (i.e. complexity) and multi-information. First, we implement a Lempel-Ziv string parsing scheme, providing seemingly elaborate entropy rate and multi-information estimates and an approximate estimator for the excess entropy. Furthermore, we apply easy-to-use black-box data compression utilities, providing approximate estimators only. For comparison and to yield results for benchmarking purposes we implement the information-theoretic observables also based on the well-established M-block Shannon entropy, which is more tedious to apply compared to the the first two algorithmic entropy estimation procedures. To test how well one can exploit the potential of such data compression techniques, we aim at detecting the critical point of the $2D$ Ising ferromagnet. Among the above observables, the multi-information, which is known to exhibit an isolated peak at the critical point, is very easy to replicate by means of both efficient algorithmic entropy estimation procedures. Finally, we assess how good the various algorithmic entropy estimates compare to the more conventional block entropy estimates and illustrate a simple modification that yields enhanced results.



rate research

Read More

We present a numerical analysis of the entropy rate and statistical complexity related to the spin flip dynamics of the 2D Ising Ferromagnet at different temperatures T. We follow an information theoretic approach and test three different entropy estimation algorithms to asses entropy rate and statistical complexity of binary sequences. The latter are obtained by monitoring the orientation of a single spin on a square lattice of side-length L=256 at a given temperature parameter over time. The different entropy estimation procedures are based on the M-block Shannon entropy (a well established method that yields results for benchmarking purposes), non-sequential recursive pair substitution (providing an elaborate and an approximate estimator) and a convenient data compression algorithm contained in the zlib-library (providing an approximate estimator only). We propose an approximate measure of statistical complexity that emphasizes on correlations within the sequence and which is easy to implement, even by means of black-box data compression algorithms. Regarding the 2D Ising Ferromagnet simulated using Metropolis dynamics and for binary sequences of finite length, the proposed approximate complexity measure is peaked close to the critical temperature. For the approximate estimators, a finite-size scaling analysis reveals that the peak approaches the critical temperature as the sequence length increases. Results obtained using different spin-flip dynamics are briefly discussed. The suggested complexity measure can be extended to non-binary sequences in a straightforward manner.
We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distribution function of the critical internal energy and for the specific heat fluctuations. It is shown that the disorder distribution of internal energies is Gaussian, and the typical sample-to-sample fluctuations as well as the average value scale with the system size $L$ like $sim L lnln(L)$. In contrast, the specific heat is shown to be self-averaging with a distribution function that tends to a $delta$-peak in the thermodynamic limit $L to infty$. While previously a lack of self-averaging was found for the free energy, we here obtain results for quantities that are directly measurable in simulations, and implications for measurements in the actual lattice system are discussed.
Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational error was found to have power scaling with respect to the number of data points in the sample ($n_{tot}$). For fractals embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed generalized fractal exponents accuracy.
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which core nodes are much more ordered than peripheral nodes. Interestingly, the susceptibility shows double peaks at two distinct temperatures. We find that, if the connections between core and periphery increase linearly with network size, the first peak does not exhibit any size-dependent effect, and the second one diverges in the limit of infinite network size. Otherwise, if the connections between core and periphery scale sub-linearly with the network size, both peaks of the susceptibility diverge as power laws in the thermodynamic limit. This suggests the appearance of a double transition phenomenon in the Ising model for the latter case. Moreover, we develop a mean-field theory that agrees well with the simulations.
The two-dimensional (zero magnetic field) Ising model is known to undergo a second order para-ferromagnetic phase transition, which is accompanied by a correlated percolation transition for the Fortuin-Kasteleyn (FK) clusters. In this paper we uncover that there exists also a second temperature $T_{text{eb}}<T_c$ at which the elastic backbone of FK clusters undergoes a second order phase transition to a dense phase. The corresponding universality class, which is characterized by determining various percolation exponents, is shown to be completely different from directed percolation, proposing a new anisotropic universality class with $beta=0.54pm 0.02$, $ u_{||}=1.86pm 0.01$, $ u_{perp}=1.21pm 0.04$ and $d_f=1.53pm 0.03$. All tested hyper-scaling relations are shown to be valid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا