Constraining the gravitational wave energy density of the Universe using Earths ring


Abstract in English

The search for gravitational waves is one of todays major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earths free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earths structure. Making use of our detailed understanding of Earths normal modes, numerical models are employed for the first time to accurately calculate Earths gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earths oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

Download