Do you want to publish a course? Click here

A new soft X-ray magnetic circular dichroism facility at the BSRF beamline 4B7B

135   0   0.0 ( 0 )
 Added by Zhi-Ying Guo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray magnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C type dipole electromagnet that provides magnetic fields up to 0.5T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other theoretical predictions and experimental measurements.



rate research

Read More

Experiments of time-resolved x-ray magnetic circular dichroism (Tr-XMCD) and resonant x-ray scattering at a beamline BL07LSU in SPring-8 with a time-resolution of under 50 ps are presented. A micro-channel plate is utilized for the Tr-XMCD measurements at nearly normal incidence both in the partial electron and total fluorescence yield (PEY and TFY) modes at the L2,3 absorption edges of the 3d transition-metals in the soft x-ray region. The ultrafast photo-induced demagnetization within 50 ps is observed on the dynamics of a magnetic material of FePt thin film, having a distinct threshold of the photon density. The spectrum in the PEY mode is less-distorted both at the L2,3 edges compared with that in the TFY mode and has the potential to apply the sum rule analysis for XMCD spectra in pump-probed experiments.
The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic x-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard x-ray range. These two techniques offer powerful, complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, we address the beamline performances through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.
433 - A. Singh , H. Y. Huang , Y. Y. Chu 2020
We report on the development of a high-resolution and highly efficient beamline for soft-X-ray resonant inelastic X-ray scattering (RIXS) located at Taiwan Photon Source. This beamline adopts an optical design that uses an active grating monochromator (AGM) and an active grating spectrometer (AGS) to implement the energy compensation principle of grating dispersion. Active gratings are utilized to diminish defocus, coma and higher-order aberrations as well as to decrease the slope errors caused by thermal deformation and optical polishing. The AGS is mounted on a rotatable granite platform to enable momentum-resolved RIXS measurements with scattering angle over a wide range. Several high-precision instruments developed in house for this beamline are briefly described. The best energy resolution obtained from this AGM-AGS beamline was 12.4 meV at 530 eV, achieving a resolving power 42,000, while the bandwidth of the incident soft X-rays was kept at 0.5 eV. To demonstrate the scientific impacts of high-resolution RIXS, we present an example of momentum-resolved RIXS measurements on a high-temperature superconducting cuprate, La$_{2-x}$Sr$_x$CuO$_4$. The measurements reveal the A$_{1g}$ apical oxygen phonons in superconducting cuprates, opening a new opportunity to investigate the coupling between these phonons and charge density waves.
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corresponding to the trivalent state (Eu3+; f6), whose ground state is nonmagnetic (J=0), was observed in addition to the main XMCD peak corresponding to the magnetic (J=7/2) divalent state (Eu2+; f7). This result indicates that the 5d electrons belonging to both valence states are magnetically polarized. It was also found that the ratio P5d(3+)/P5d(2+) between the polarization of 5d electrons (P5d) in the Eu3+ state and that of Eu2+ is ~ 0.1 in EuNi2(Si0.18Ge0.82)2 and ~ 0.3 in EuNi2P2 at magnetic fields where their macroscopic magnetization values are the same. The possible origin of the XMCD of the Eu3+ state and an explanation of the dependence of P5d(3+)/P5d(2+) on the material are discussed in terms of hybridization between the conduction electrons and the f electrons.
Resonant elastic X-ray scattering has been widely employed for exploring complex electronic ordering phenomena, like charge, spin, and orbital order, in particular in strongly correlated electronic systems. In addition, recent developments of pump-probe X-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This endstation has an optical laser (wavelength of 800 nm plus harmonics) as the pump source. Based on the commissioning results, the tr-RSXS at PAL-XFEL can deliver a soft X-ray probe (400-1300 eV) with a time resolution about ~100 fs without jitter correction. As an example, the temporal dynamics of a charge density wave on a high-temperature cuprate superconductor is demonstrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا