Do you want to publish a course? Click here

Band Structure Mapping of Bilayer Graphene via Quasiparticle Scattering

152   0   0.0 ( 0 )
 Added by Brian LeRoy
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as $gamma_0 = 3.1$ eV, $gamma_1 = 0.39$ eV, and $gamma_4 = 0.22$ eV.



rate research

Read More

The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van Hove singularity transition peak, and the emergence of very strong intra-valence (intra-conduction) band transition. These anomalous optical behaviors demonstrate consistently the non-rigid band structure modification created by the ion-gel gating through the layer-dependent Coulomb screening. We propose that this screening-driven band modification is an universal phenomenon that persists to other bilayer crystals in general, establishing the electrical gating as a versatile technique to engineer the band structures and to create new types of optical absorptions that can be exploited in electro-optical device application.
125 - Guodong Yu , Zewen Wu , Zhen Zhan 2019
In this paper, the electronic properties of 30{deg} twisted double bilayer graphene, which loses the translational symmetry due to the incommensurate twist angle, are studied by means of the tight-binding approximation. We demonstrate the interlayer decoupling in the low-energy region from various electronic properties, such as the density of states, effective band structure, optical conductivity and Landau level spectrum. However, at Q points, the interlayer coupling results in the appearance of new Van Hove singularities in the density of states, new peaks in the optical conductivity and importantly the 12-fold-symmetry-like electronic states. The k-space tight-binding method is adopted to explain this phenomenon. The electronic states at Q points show the charge distribution patterns more complex than the 30{deg} twisted bilayer graphene due to the symmetry decrease. These phenomena appear also in the 30{deg} twisted interface between graphene monolayer and AB stacked bilayer.
The effect of an hexagonal boron nitride (hBN) layer close aligned with twisted bilayer graphene (TBG) is studied. At sufficiently low angles between twisted bilayer graphene and hBN, $theta_{hBN} lesssim 2^circ$, the graphene electronic structure is strongly disturbed. The width of the low energy peak in the density of states changes from $W sim 5 - 10$ meV for a decoupled system to $sim 20 - 30$ meV. Spikes in the density of states due to van Hove singularities are smoothed out. We find that for a realistic combination of the twist angle in the TBG and the twist angle between the hBN and the graphene layer the system can be described using a single moire unit cell.
206 - M. Sprinkle , D. Siegel , Y. Hu 2009
Angle-resolved photoemission and X-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films cause adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds to an individual macro-scale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا