Do you want to publish a course? Click here

Carbon nanotube quantum dots on hexagonal boron nitride

181   0   0.0 ( 0 )
 Added by Andreas Baumgartner
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the fabrication details and low-temperature characteristics of the first carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.



rate research

Read More

292 - S. Engels , A. Epping , C. Volk 2013
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. For graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.
84 - N. Fang , K. Otsuka , A. Ishii 2020
Hexagonal boron nitride is widely used as a substrate for two-dimensional materials in both electronic and photonic devices. Here, we demonstrate that two-dimensional hexagonal boron nitride is also an ideal substrate for one-dimensional single-walled carbon nanotubes. Nanotubes directly attached to hexagonal boron nitride show bright photoluminescence with narrow linewidth at room temperature, comparable to air-suspended nanotubes. Using photoluminescence excitation spectroscopy, we unambiguously assign the chiralities of nanotubes on boron nitride by tracking individual tubes before and after contact with boron nitride. Although hexagonal boron nitride has a low dielectric constant and is attached to only one side of the nanotubes, we observe that optical transition energies are redshifted as much as ~50 meV from the air-suspended nanotubes. We also perform statistical measurements on more than 400 tubes, and the redshifts are found to be dependent on tube diameter. This work opens up new possibilities for all-solid-state carbon nanotube photonic devices by utilizing hexagonal boron nitride substrates.
Hexagonal boron nitride (h-BN) is unique among two-dimensional materials, with a large band gap (~6 eV) and high thermal conductivity (>400 W/m/K), second only to diamond among electrical insulators. Most electronic studies to date have relied on h-BN exfoliated from bulk crystals; however, for scalable applications the material must be synthesized by methods such as chemical vapor deposition (CVD). Here, we demonstrate single- and few-layer h-BN synthesized by CVD on single crystal platinum and on carbon nanotube (CNT) substrates, also comparing these films with h-BN deposited on the more commonly used polycrystalline Pt and Cu growth substrates. The h-BN film grown on single crystal Pt has a lower surface roughness and is more spatially homogeneous than the film from a polycrystalline Pt foil, and our electrochemical transfer process allows for these expensive foils to be reused with no measurable degradation. In addition, we demonstrate monolayer h-BN as an ultrathin, 3.33 $unicode{x212B}$ barrier protecting MoS2 from damage at high temperatures and discuss other applications that take advantage of the conformal h-BN deposition on various substrates demonstrated in this work.
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blockade peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.
Hexagonal boron nitride (h-BN), one of the hallmark van der Waals (vdW) layered crystals with an ensemble of attractive physical properties, is playing increasingly important roles in exploring two-dimensional (2D) electronics, photonics, mechanics, and emerging quantum engineering. Here, we report on the demonstration of h-BN phononic crystal waveguides with designed pass and stop bands in the radio frequency (RF) range and controllable wave propagation and transmission, by harnessing arrays of coupled h-BN nanomechanical resonators with engineerable coupling strength. Experimental measurements validate that these phononic crystal waveguides confine and support 15 to 24 megahertz (MHz) wave propagation over 1.2 millimeters. Analogous to solid-state atomic crystal lattices, phononic bandgaps and dispersive behaviors have been observed and systematically investigated in the h-BN phononic waveguides. Guiding and manipulating acoustic waves on such additively integratable h-BN platform may facilitate multiphysical coupling and information transduction, and open up new opportunities for coherent on-chip signal processing and communication via emerging h-BN photonic and phononic devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا