Do you want to publish a course? Click here

Experimental implementation of quantum gates through actuator qubits

219   0   0.0 ( 0 )
 Added by Jingfu Zhang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Universal quantum computation requires the implementation of arbitrary control operations on the quantum register. In most cases, this is achieved by external control fields acting selectively on each qubit to drive single-qubit operations. In combination with a drift Hamiltonian containing interactions between the qubits, this allows the implementation of any required gate operation. Here, we demonstrate an alternative scheme that does not require local control for all qubits: we implement one- and two-qubit gate operations on a set of target qubits indirectly, through a combination of gates on directly controlled actuator qubits with a drift Hamiltonian that couples actuator and target qubits. Experiments are performed on nuclear spins, using radio-frequency pulses as gate operations and magnetic-dipole couplings for the drift Hamiltonian.



rate research

Read More

Precise control of an open quantum system is critical to quantum information processing, but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally at room temperature a type of dynamically corrected gates on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by environment nuclear spin bath is reduced from being the second-order to the sixth-order of the noise to control field ratio, which offers greater efficiency in reducing the infidelity by reducing the noise level. The decay time of the coherent oscillation driven by dynamically corrected gates is shown to be two orders of magnitude longer than the dephasing time, and is essentially limited by spin-lattice relaxation. The infidelity of DCG, which is actually constrained by the decay time, reaches $4times 10^{-3}$ at room temperature and is further reducible by 2-3 orders of magnitudes via lowering temperature. The greatly reduced noise dependence of infidelity and the uttermost extension of the coherent time mark an important step towards fault-tolerant quantum computation in realistic systems.
We propose a scheme to perform probabilistic quantum gates on remote trapped atom qubits through interference of optical frequency qubits. The method does not require localization of the atoms to the Lamb-Dicke limit, and is not sensitive to interferometer phase instabilities. Such probabilistic gates can be used for scalable quantum computation.
We experimentally demonstrate the underlying physical mechanism of the recently proposed protocol for superreplication of quantum phase gates [W. Dur, P. Sekatski, and M. Skotiniotis, Phys. Rev. Lett. 114, 120503 (2015)], which allows to produce up to $N^2$ high-fidelity replicas from N input copies in the limit of large N. Our implementation of 1->2 replication of the single-qubit phase gates is based on linear optics and qubits encoded into states of single photons. We employ the quantum Toffoli gate to imprint information about the structure of an input two-qubit state onto an auxiliary qubit, apply the replicated operation to the auxiliary qubit, and then disentangle the auxiliary qubit from the other qubits by a suitable quantum measurement. We characterize the replication protocol by full quantum process tomography and observe good agreement of the experimental results with theory.
We characterize the energetic footprint of a two-qubit quantum gate from the perspective of non-equilibrium quantum thermodynamics. We experimentally reconstruct the statistics of energy and entropy fluctuations following the implementation of a controlled-unitary gate, linking them to the performance of the gate itself and the phenomenology of Landauer principle at the single-quantum level. Our work thus addresses the energetic cost of operating quantum circuits, a problem that is crucial for the grounding of the upcoming quantum technologies.
We show how the spin independent scattering between two identical flying qubits can be used to implement an entangling quantum gate between them. We consider one dimensional models with a delta interaction in which the qubits undergoing the collision are distinctly labeled by their opposite momenta. The logical states of the qubit may either be two distinct spin (or other internal) states of a fermion or a boson or two distinct momenta magnitudes of a spinless boson. Our scheme could be added to linear optics-like quantum information processing to enhance its efficiency, and can also aid the scaling of quantum computers based on static qubits without resorting to photons. Three distinct ingredients -- the quantum indistinguishability of the qubits, their interaction, and their dimensional confinement, come together in a natural way to enable the quantum gate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا