Do you want to publish a course? Click here

Two- and Three-Dimensional Multi-Physics Simulations of Core Collapse Supernovae: A Brief Status Report and Summary of Results from the Oak Ridge Group

385   0   0.0 ( 0 )
 Added by Anthony Mezzacappa
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We summarize the results of core collapse supernova theory from one-, two-, and three-dimensional models and provide a snapshot of the field at this time. We also present results from the Oak Ridge group in this context. Studies in both one and two spatial dimensions define the necessary} physics that must be included in core collapse supernova models: a general relativistic treatment of gravity (at least an approximate one), spectral neutrino transport, including relativistic effects such as gravitational redshift, and a complete set of neutrino weak interactions that includes state-of-the-art electron capture on nuclei and energy-exchanging scattering on electrons and nucleons. Whether or not the necessarily approximate treatment of this physics in current models that include it is sufficient remains to be determined in the context of future models that remove the approximations. We summarize the results of the Oak Ridge groups two-dimensional supernova models. In particular, we demonstrate that robust neutrino-driven explosions can be obtained. We also demonstrate that our predictions of the explosion energies and remnant neutron star masses are in agreement with observations, although a much larger number of models must be developed before more confident conclusions can be made. We provide preliminary results from our ongoing three dimensional model with the same physics. Finally, we speculate on future outcomes and directions.



rate research

Read More

We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.
We perform two- (2D) and three-dimensional (3D) hydrodynamics simulations of convective oxygen shell-burning that takes place deep inside a massive progenitor star of a core-collapse supernova. Using one dimensional (1D) stellar evolution code, we first calculate the evolution of massive stars with an initial mass of 9-40 $M_odot$. Four different overshoot parameters are applied, and CO core mass trend similar to previous works is obtained in the 1D models. Selecting eleven 1D models that have a silicon and oxygen coexisting layer, we perform 2D hydrodynamics simulations of the evolution $sim$100 s until the onset of core-collapse. We find that convection with large-scale eddies and the turbulent Mach number $sim$0.1 is obtained in the models having a Si/O layer with a scale of 10$^8$ cm, whereas most models that have an extended O/Si layer up to a few $times 10^9$ cm exhibit lower turbulent velocity. Our results indicate that the supernova progenitors that possess a thick Si/O layer could provide a preferable condition for perturbation-aided explosions. We perform 3D simulation of a 25 $M_odot$ model, which exhibits large-scale convection in the 2D models. The 3D model develops large ($ell = 2$) convection similar to the 2D model, however, the turbulent velocity is lower. By estimating the neutrino emission properties of the 3D model, we point out that a time modulation of the event rates, if observed in KamLAND and Hyper-Kamiokande, would provide an important information about structural changes in the presupernova convective layer.
Unraveling the mechanism for core-collapse supernova explosions is an outstanding computational challenge and the problem remains essentially unsolved despite more than four decades of effort. However, much progress in realistic modeling has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements have led to some key insights which may clarify the picture in the not too distant future. Here we briefly review the current status of the three explosion mechanisms (acoustic, MHD, and neutrino heating) that are currently under active investigation, concentrating on the neutrino heating mechanism as the one most likely responsible for producing explosions from progenitors in the mass range ~10 to ~25 solar masses. We then briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We finally describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 solar mass progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 10,000 km. We finally very briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 solar mass progenitor.
282 - C. D. Ott 2012
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27-solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a 3-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27-solar-mass progenitor was studied in 2D by B. Mueller et al. (ApJ 761:72, 2012), who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.
We present 3D simulations of core-collapse supernovae from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, considering two 15 Msun red supergiants (RSG) and two blue supergiants (BSG) of 15 Msun and 20 Msun. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximal Ni and minimal H velocities do not only depend on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities) but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which lead to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a great global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km/s for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 Msun BSG shares these properties (maximum Ni speeds up to ~3500 km/s), the 20 Msun BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km/s) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He/H interface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا