No Arabic abstract
We describe a 3He magnetometer capable to measure high magnetic fields (B > 0.1 Tesla) with a relative accuracy of better than 10^-12. Our approach is based on the measurement of the free induction decay of gaseous, nuclear spin polarized 3He following a resonant radio frequency pulse excitation. The measurement sensitivity can be attributed to the long coherent spin precession time T2* being of order minutes which is achieved for spherical sample cells in the regime of motional narrowing where the disturbing influence of field inhomogeneities is strongly suppressed. The 3He gas is spin polarized in-situ using a new, non-standard variant of the metastability exchange optical pumping. We show that miniaturization helps to increase T2* further and that the measurement sensitivity is not significantly affected by temporal field fluctuations of order 10^-4.
We demonstrate the use of a hybrid $^{3}$He / $^{87}$Rb magnetometer to measure absolute magnetic fields in the pT range. The measurements were undertaken by probing time-dependent $^3$He magnetisation using $^{87}$Rb zero-field magnetometers. Measurements were taken to demonstrate the use of the magnetometer in cancelling residual fields within a magnetic shield. It was shown that the absolute field could be reduced to the 10 pT level by using field readings from the magnetometer. Furthermore, the hybrid magnetometer was shown to be applicable for the reduction of gradient fields by optimising the effective $^3$He $T_2$ time. This procedure represents a convenient and consistent way to provide a near zero magnetic field environment which can be potentially used as a base for generating desired magnetic field configurations for use in precision measurements.
Precision sensing, and in particular high precision magnetometry, is a central goal of research into quantum technologies. For magnetometers, often trade-offs exist between sensitivity, spatial resolution, and frequency range. The precision, and thus the sensitivity of magnetometry, scales as $1/sqrt {T_2}$ with the phase coherence time, $T_2$, of the sensing system playing the role of a key determinant. Adapting a dynamical decoupling scheme that allows for extending $T_2$ by orders of magnitude and merging it with a magnetic sensing protocol, we achieve a measurement sensitivity even for high frequency fields close to the standard quantum limit. Using a single atomic ion as a sensor, we experimentally attain a sensitivity of $4.6$ pT $/sqrt{Hz}$ for an alternating-current magnetic field near 14 MHz. Based on the principle demonstrated here, this unprecedented sensitivity combined with spatial resolution in the nanometer range and tunability from direct-current to the gigahertz range could be used for magnetic imaging in as of yet inaccessible parameter regimes.
The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization the frequency determination with the Penning trap only shows a linear temporal drift over several hours on the 10 ppb level due to the finite resistance of the superconducting magnet coils.
We developed an impedance bridge that operates at cryogenic temperatures (down to 60 mK) and in perpendicular magnetic fields up to at least 12 T. This is achieved by mounting a GaAs HEMT amplifier perpendicular to a printed circuit board containing the device under test and thereby parallel to the magnetic field. The measured amplitude and phase of the output signal allows for the separation of the total impedance into an absolute capacitance and a resistance. Through a detailed noise characterization, we find that the best resolution is obtained when operating the HEMT amplifier at the highest gain. We obtained a resolution in the absolute capacitance of 6.4~aF$/sqrt{textrm{Hz}}$ at 77 K on a comb-drive actuator, while maintaining a small excitation amplitude of 15~$k_text{B} T/e$. We show the magnetic field functionality of our impedance bridge by measuring the quantum Hall plateaus of a top-gated hBN/graphene/hBN heterostructure at 60~mK with a probe signal of 12.8~$k_text{B} T/e$.
The National High Magnetic Field Laboratory (NHMFL) High B/T facility at the University of Florida in Gainesville provides a unique combination of ultra-low temperatures below 1 mK and high magnetic fields up to 16 T for user experiments. To meet the growing user demand for calorimetric and thermal transport measurements, particularly on milligram-sized solid samples, we are developing scaleable thermometers based on quartz tuning fork resonators immersed in liquid $^3$He. We demonstrate successful thermometer operation at the combined extreme conditions available at our user facility, and discuss the feasibility of fast and compact thermal probes.