We study bulk electronic states of superconducting topological insulator, which is the promising candidate for topological superconductor. Recent experiments suggest that the three-dimensional Fermi surface evolves into two-dimensional one. We show that the superconducting energy gap structure on the Fermi surface systematically changes with this evolution. It is clarified that the bulk electronic properties such as spin-lattice relaxation rate and specific heat depend on the shape of the Fermi surface and the type of the energy gap function. These results serve as a guide to determine the pairing symmetry of Cu$_x$Bi$_2$Se$_3$.