Do you want to publish a course? Click here

Ontological Approach toward Cybersecurity in Cloud Computing

159   0   0.0 ( 0 )
 Added by Takeshi Takahashi
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Widespread deployment of the Internet enabled building of an emerging IT delivery model, i.e., cloud computing. Albeit cloud computing-based services have rapidly developed, their security aspects are still at the initial stage of development. In order to preserve cybersecurity in cloud computing, cybersecurity information that will be exchanged within it needs to be identified and discussed. For this purpose, we propose an ontological approach to cybersecurity in cloud computing. We build an ontology for cybersecurity operational information based on actual cybersecurity operations mainly focused on non-cloud computing. In order to discuss necessary cybersecurity information in cloud computing, we apply the ontology to cloud computing. Through the discussion, we identify essential changes in cloud computing such as data-asset decoupling and clarify the cybersecurity information required by the changes such as data provenance and resource dependency information.



rate research

Read More

Cloud service providers offer a low-cost and convenient solution to host unstructured data. However, cloud services act as third-party solutions and do not provide control of the data to users. This has raised security and privacy concerns for many organizations (users) with sensitive data to utilize cloud-based solutions. User-side encryption can potentially address these concerns by establishing user-centric cloud services and granting data control to the user. Nonetheless, user-side encryption limits the ability to process (e.g., search) encrypted data on the cloud. Accordingly, in this research, we provide a framework that enables processing (in particular, searching) of encrypted multi-organizational (i.e., multi-source) big data without revealing the data to cloud provider. Our framework leverages locality feature of edge computing to offer a user-centric search ability in a real-time manner. In particular, the edge system intelligently predicts the users search pattern and prunes the multi-source big data search space to reduce the search time. The pruning system is based on efficient sampling from the clustered big dataset on the cloud. For each cluster, the pruning system dynamically samples appropriate number of terms based on the users search tendency, so that the cluster is optimally represented. We developed a prototype of a user-centric search system and evaluated it against multiple datasets. Experimental results demonstrate 27% improvement in the pruning quality and search accuracy.
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
Cybersecurity is a domain where there is constant change in patterns of attack, and we need ways to make our Cybersecurity systems more adaptive to handle new attacks and categorize for appropriate action. We present a novel approach to handle the alarm flooding problem faced by Cybersecurity systems like security information and event management (SIEM) and intrusion detection (IDS). We apply a zero-shot learning method to machine learning (ML) by leveraging explanations for predictions of anomalies generated by a ML model. This approach has huge potential to auto detect alarm labels generated in SIEM and associate them with specific attack types. In this approach, without any prior knowledge of attack, we try to identify it, decipher the features that contribute to classification and try to bucketize the attack in a specific category - using explainable AI. Explanations give us measurable factors as to what features influence the prediction of a cyber-attack and to what degree. These explanations generated based on game-theory are used to allocate credit to specific features based on their influence on a specific prediction. Using this allocation of credit, we propose a novel zero-shot approach to categorize novel attacks into specific new classes based on feature influence. The resulting system demonstrated will get good at separating attack traffic from normal flow and auto-generate a label for attacks based on features that contribute to the attack. These auto-generated labels can be presented to SIEM analyst and are intuitive enough to figure out the nature of attack. We apply this approach to a network flow dataset and demonstrate results for specific attack types like ip sweep, denial of service, remote to local, etc. Paper was presented at the first Conference on Deployable AI at IIT-Madras in June 2021.
71 - Josh Payne , Ashish Kundu 2019
In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each systems logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns of privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon, and Microsoft. Community Cloud Computing makes use of the principles of Digital Ecosystems to provide a paradigm for Clouds in the community, offering an alternative architecture for the use cases of Cloud Computing. It is more technically challenging to deal with issues of distributed computing, such as latency, differential resource management, and additional security requirements. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا